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1.1 Introduction

Cryptography has along and fascinating history. The most compl ete non-technical account
of the subject is Kahn's The Codebreakers. This book traces cryptography from itsinitial
and limited use by the Egyptians some 4000 years ago, to the twentieth century where it
played a crucial rolein the outcome of both world wars. Completed in 1963, Kahn's book
coversthose aspects of the history which were most significant (up to that time) to thedevel -
opment of the subject. The predominant practitioners of the art were those associated with
the military, the diplomatic service and government in general. Cryptography was used as
atool to protect national secrets and strategies.

The proliferation of computers and communications systemsin the 1960s brought with
it ademand from the private sector for meansto protect information in digital form and to
provide security services. Beginning with thework of Feistel at IBM intheearly 1970sand
culminating in 1977 with the adoption as a U.S. Federal Information Processing Standard
for encrypting unclassified information, DES, the Data Encryption Standard, is the most
well-known cryptographic mechanism in history. It remains the standard means for secur-
ing electronic commerce for many financial institutions around the world.

Themost striking devel opment inthe history of cryptography camein 1976 when Diffie
and Hellman published New Directionsin Cryptography. This paper introduced the revolu-
tionary concept of public-key cryptography and also provided a new and ingenious method
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2 Ch. 1 Overview of Cryptography

for key exchange, the security of which is based on the intractability of the discrete loga-
rithm problem. Although the authors had no practical realization of a public-key encryp-
tion scheme at the time, the idea was clear and it generated extensive interest and activity
in the cryptographic community. In 1978 Rivest, Shamir, and Adleman discovered thefirst
practical public-key encryption and signature scheme, now referred to as RSA. The RSA
schemeis based on another hard mathematical problem, the intractability of factoring large
integers. This application of a hard mathematical problem to cryptography revitalized ef-
forts to find more efficient methods to factor. The 1980s saw major advances in this area
but none which rendered the RSA system insecure. Another class of powerful and practical
public-key schemes was found by ElGamal in 1985. These are also based on the discrete
logarithm problem.

One of the most significant contributions provided by public-key cryptography is the
digital signature. In 1991 the first international standard for digital signatures (ISO/IEC
9796) was adopted. It is based on the RSA public-key scheme. In 1994 the U.S. Govern-
ment adopted the Digital Signature Standard, a mechanism based on the ElGamal public-
key scheme.

The search for new public-key schemes, improvementsto existing cryptographic mec-
hanisms, and proofs of security continuesat arapid pace. Various standards and infrastruc-
turesinvolving cryptography are being put in place. Security products are being devel oped
to address the security needs of an information intensive society.

The purpose of thisbook is to give an up-to-date treatise of the principles, techniques,
and algorithms of interest in cryptographic practice. Emphasis has been placed on those
aspects which are most practical and applied. The reader will be made aware of the basic
issues and pointed to specific related research in the literature where more indepth discus-
sions can be found. Due to the volume of material which is covered, most results will be
stated without proofs. This also servesthe purpose of not obscuring the very applied nature
of the subject. This book isintended for both implementers and researchers. It describes
algorithms, systems, and their interactions.

Chapter 1 is atutoria on the many and various aspects of cryptography. It does not
attempt to convey all of the details and subtleties inherent to the subject. Its purposeisto
introducethe basi cissuesand principlesand to point thereader to appropriate chaptersinthe
book for more comprehensive treatments. Specific techniques are avoided in this chapter.

1.2 Information security and cryptography

The concept of information will be taken to be an understood quantity. To introduce cryp-
tography, an understanding of issuesrelated to information security in general is necessary.
Information security manifestsitself in many ways according to the situation and require-
ment. Regardless of who isinvolved, to one degree or another, all parties to a transaction
must have confidencethat certain obj ectives associated with information security have been
met. Some of these objectivesarelisted in Table 1.1.

Over the centuries, an elaborate set of protocols and mechanisms has been created to
deal with information security issues when the information is conveyed by physical doc-
uments. Often the objectives of information security cannot solely be achieved through
mathematical algorithmsand protocols alone, but require procedural techniques and abid-
ance of laws to achieve the desired result. For example, privacy of lettersis provided by
sealed envelopes delivered by an accepted mail service. The physical security of the en-
velopeis, for practical necessity, limited and so laws are enacted which make it a criminal
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§1.2 Information security and cryptography 3

privacy keeping information secret from all but those who are autho-

or confidentiality rized to seeit.

dataintegrity ensuring information has not been altered by unauthorized or
unknown means.

entity authentication || corroboration of the identity of an entity (e.g., a person, a

or identification computer terminal, a credit card, etc.).

message corroborating the source of information; also known as data

authentication origin authentication.

signature ameans to bind information to an entity.

authorization conveyance, to another entity, of official sanction to do or be
something.

validation ameans to provide timeliness of authorization to use or ma-
nipulate information or resources.

access control restricting access to resourcesto privileged entities.

certification endorsement of information by atrusted entity.

timestamping recording the time of creation or existence of information.

witnessing verifying the creation or existence of information by an entity
other than the creator.

receipt acknowledgement that information has been received.

confirmation acknowledgement that services have been provided.

ownership a means to provide an entity with the legal right to use or
transfer aresource to others.

anonymity concealing theidentity of an entity involved in some process.

non-repudiation preventing the denial of previous commitmentsor actions.

revocation retraction of certification or authorization.

Table 1.1: Some information security objectives.

offense to open mail for which oneis not authorized. It is sometimes the case that security
isachieved not through the information itself but through the physical document recording
it. For example, paper currency requiresspecial inksand material to prevent counterfeiting.

Conceptually, the way informationisrecorded has not changed dramatically over time.
Whereas information was typically stored and transmitted on paper, much of it now re-
sides on magnetic media and is transmitted via telecommunications systems, some wire-
less. What has changed dramatically is the ability to copy and ater information. One can
make thousands of identical copies of apiece of information stored electronically and each
isindistinguishable from the original. With information on paper, thisis much more diffi-
cult. What is needed then for a society where information is mostly stored and transmitted
in electronic form is a means to ensure information security which is independent of the
physical medium recording or conveying it and such that the objectives of information se-
curity rely solely on digital information itself.

One of the fundamental tools used in information security isthe signature. Itisabuild-
ing block for many other services such as non-repudiation, data origin authentication, iden-
tification, and witnessing, to mention afew. Having learned the basics in writing, an indi-
vidual is taught how to produce a handwritten signature for the purpose of identification.
At contract age the signature evolvesto take on avery integral part of the person’sidentity.
This signature is intended to be unique to the individual and serve as a means to identify,
authorize, and validate. With electronic information the concept of a signature needsto be
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redressed; it cannot simply be something unique to the signer and independent of the in-
formation signed. Electronic replication of it is so simple that appending a signature to a
document not signed by the originator of the signature is almost atriviality.

Analogues of the “ paper protocols’ currently in use are required. Hopefully these new
electronic based protocols are at least as good as those they replace. Thereis a unique op-
portunity for society to introduce new and more efficient ways of ensuring information se-
curity. Much can be learned from the evol ution of the paper based system, mimicking those
aspects which have served us well and removing the inefficiencies.

Achieving information security in an electronic society requiresavast array of techni-
cal and legal skills. Thereis, however, no guarantee that all of the information security ob-
jectives deemed necessary can be adequately met. Thetechnical meansis provided through

cryptography.

Definition Cryptography isthe study of mathematical techniquesrelated to aspects of in-
formation security such as confidentiality, dataintegrity, entity authentication, and data ori-
gin authentication.

Cryptography is not the only means of providing information security, but rather one set of
techniques.

Cryptographic goals
Of all the information security objectives listed in Table 1.1, the following four form a

framework uponwhichtheotherswill bederived: (1) privacy or confidentiality (§1.5, §1.8);
(2) dataintegrity (§1.9); (3) authentication (§1.7); and (4) non-repudiation (§1.6).

1. Confidentiality isaservice used to keep the content of information from all but those
authorized to haveit. Secrecy isaterm synonymouswith confidentiality and privacy.
There are numerous approaches to providing confidentiality, ranging from physical
protection to mathematical algorithms which render data unintelligible.

2. Data integrity is a service which addresses the unauthorized alteration of data. To
assure data integrity, one must have the ability to detect data manipulation by unau-
thorized parties. Data manipulation includes such things as insertion, deletion, and
substitution.

3. Authenticationisaservicerelated to identification. Thisfunction appliesto both enti-
tiesand informationitself. Two partiesentering into acommunication shouldidentify
each other. Information delivered over achannel should be authenticated asto origin,
date of origin, data content, time sent, etc. For these reasons this aspect of cryptog-
raphy is usualy subdivided into two major classes: entity authentication and data
origin authentication. Data origin authentication implicitly provides data integrity
(for if amessage is modified, the source has changed).

4. Non-repudiationisaservicewhich preventsan entity from denying previouscommit-
ments or actions. When disputes arise due to an entity denying that certain actions
were taken, a means to resolve the situation is necessary. For example, one entity
may authorize the purchase of property by another entity and later deny such autho-
rization was granted. A procedureinvolving atrusted third party is needed to resolve
the dispute.

A fundamental goal of cryptography isto adequately address these four areas in both
theory and practice. Cryptography is about the prevention and detection of cheating and
other malicious activities.

Thisbook describesanumber of basic cryptographic tools (primitives) used to provide
information security. Examples of primitives include encryption schemes (§1.5 and §1.8),
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§1.2 Information security and cryptography 5

hash functions (§1.9), and digital signature schemes(§1.6). Figure 1.1 providesaschematic
listing of the primitives considered and how they relate. Many of thesewill be briefly intro-
ducedinthischapter, with detailed discussion | eft to l ater chapters. These primitives should

Arbitrary length
hash functions

Unkeyed One-way permutations
Primitives

Random sequences

Block
ciphers

Symmetric-key
ciphers

Stream

Arbitrary length ciphers
hash functions (MACs)

Security Symmetric-key
Primitives Primitives

Signatures

Pseudorandom
sequences

Identification primitives

Public-key
ciphers

Public-key Signatures
Primitives

Identification primitives

Figure 1.1: Ataxonomy of cryptographic primitives.

be evaluated with respect to various criteria such as:

1. level of security. Thisisusually difficult to quantify. Oftenitisgivenintermsof the
number of operationsrequired (using the best methods currently known) to defeat the
intended objective. Typically the level of security is defined by an upper bound on
the amount of work necessary to defeat the objective. Thisis sometimes called the
work factor (see §1.13.4).

2. functionality. Primitives will need to be combined to meet various information se-
curity objectives. Which primitives are most effective for a given objective will be
determined by the basic properties of the primitives.

3. methods of operation. Primitives, when applied in variousways and with variousin-
puts, will typically exhibit different characteristics; thus, one primitive could provide
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very different functionality depending on its mode of operation or usage.

4. performance. Thisrefersto the efficiency of a primitivein a particular mode of op-
eration. (For example, an encryption algorithm may be rated by the number of bits
per second which it can encrypt.)

5. ease of implementation. This refers to the difficulty of realizing the primitive in a
practical instantiation. Thismight include the complexity of implementing the prim-
itivein either a software or hardware environment.

The relative importance of various criteriais very much dependent on the application
and resourcesavailable. For example, in an environment where computing power islimited
one may haveto trade off avery high level of security for better performance of the system
asawhole.

Cryptography, over the ages, has been an art practised by many who have devised ad
hoc techniques to meet some of the information security requirements. The last twenty
yearshavebeen aperiod of transition asthe disciplinemoved from an art to ascience. There
are now severa international scientific conferences devoted exclusively to cryptography
and also an international scientific organization, the International Association for Crypto-
logic Research (IACR), aimed at fostering research in the area.

This book is about cryptography: the theory, the practice, and the standards.

1.3 Background on functions

While this book is not a treatise on abstract mathematics, a familiarity with basic mathe-
matical conceptswill prove to be useful. One concept which is absolutely fundamental to
cryptography is that of a function in the mathematical sense. A function is alternately re-
ferred to as a mapping or atransformation.

1.3.1 Functions (1-1, one-way, trapdoor one-way)

1.2

13

A set consists of distinct objectswhich are called elements of the set. For example, aset X
might consist of the elementsa, b, ¢, and thisis denoted X = {a, b, c}.

Definition A functionisdefined by two sets X and Y and arule f which assignsto each
element in X precisely oneelement in Y. The set X is called the domain of the function
and Y the codomain. If z isan element of X (usually written z € X) theimage of z isthe
element in Y which therule f associates with x; theimage y of = isdenoted by y = f(z).
Standard notation for afunction f fromset X tosetYisf: X — Y. If y € Y, thena
preimageof y isanelement z € X for which f(z) = y. Theset of al elementsinY which
have at least one preimageis called the image of f, denoted Im(f).

Example (function) Consider the sets X = {a,b,c}, Y = {1,2,3,4}, and therule f
from X to Y defined as f(a) = 2, f(b) = 4, f(¢) = 1. Figure 1.2 shows a schematic of
the sets X, Y and the function f. The preimage of the element 2 isa. Theimage of f is
{1,2,4}. O

Thinking of afunction in terms of the schematic (sometimes called a functional dia-
gram) given in Figure 1.2, each element in the domain X has precisely one arrowed line
originating fromit. Each element in the codomain Y can have any number of arrowed lines
incident to it (including zero lines).
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1.4

15

1.6

1.7

1.8

1.9

1.10

o1
a
o2
X +bvo Y
o3
c O
o4

Figure 1.2: Afunction f froma set X of three elementsto a set Y of four elements.

Often only the domain X and therule f are given and the codomain is assumed to be
theimage of f. Thispoint isillustrated with two examples.

Example (function) Take X = {1,2,3,...,10} andlet f betherulethat for eachz € X,
f(z) = rz, wherer,, isthe remainder when =2 isdivided by 11. Explicitly then

JU)=1 f@)=4 f3)=9 f4)=5 f(5)=3
f6)=3 f()=5 f®)=9 7(9)=4 F10)=1.

Theimageof f isthesetY = {1, 3,4,5,9}. O

Example (function) Take X = {1,2,3,...,10°°} andlet f betherule f(x) = r,., where
7, isthe remainder when z2 is divided by 10°° + 1 for al 2 € X. Hereit is not feasible
to write down f explicitly asin Example 1.4, but nonetheless the function is completely
specified by the domain and the mathematical description of therule f. O

(i) 1-1 functions

Definition A function (or transformation) is 1 — 1 (one-to-one) if each element in the
codomain Y isthe image of at most one element in the domain X.

Definition A function (or transformation) is onto if each element in the codomain Y is
the image of at least one element in the domain. Equivaently, afunction f: X — Y is
ontoif Im(f) =Y.

Definition Ifafunctionf: X — Y isl—1andIm(f) =Y, then f iscalled abijection.

Fact If f: X — Y is1l — 1then f: X — Im(f) isabijection. In particular, if
f: X —Yisl—1,and X andY arefinite sets of the same size, then f isabijection.

In terms of the schematic representation, if f is a bijection, then each element in Y
has exactly one arrowed lineincident with it. The functions described in Examples 1.3 and
1.4 are not bijections. In Example 1.3 the element 3 is not the image of any element in the
domain. In Example 1.4 each element in the codomain has two preimages.

Definition If f isabijectionfrom X toY thenitisasimple matter to define abijection g

fromY to X asfollows: for eachy € Y defineg(y) = x wherexz € X and f(z) = y. This
function g obtained from f is called the inverse function of f andisdenoted by g = 1.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.
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1.13

1.14

f g
a o 1 1 a
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d o 4 4 o d
e o 5 5 0 O e

Figure 1.3: Abijection f anditsinverseg = f~*.

Example (inversefunction) Let X = {a,b,¢,d,e},andY = {1,2,3,4,5}, and consider
therule f given by the arrowed edges in Figure 1.3. f is a bijection and its inverse g is
formed simply by reversing thearrowsontheedges. Thedomainof gisY andthecodomain
isX. d

Note that if f is a bijection, then so is f~1. In cryptography bijections are used as
the tool for encrypting messages and the inverse transformations are used to decrypt. This
will be made clearer in §1.4 when some basic terminology isintroduced. Notice that if the
transformations were not bijections then it would not be possible to always decrypt to a

unique message.
(i) One-way functions

There are certain types of functions which play significant roles in cryptography. At the
expense of rigor, an intuitive definition of a one-way function is given.

Definition A function f from aset X toaset Y iscalled a one-way function if f(z) is
“easy” to computefor all z € X but for “essentialy all” elementsy € Im(f) it is“com-
putationally infeasible” to find any « € X suchthat f(z) = y.

Note (clarification of termsin Definition 1.12)

(i) A rigorous definition of the terms “easy” and “computationally infeasible” is neces-
sary but would detract from the simple ideathat is being conveyed. For the purpose
of this chapter, the intuitive meaning will suffice.

(ii) The phrase “for essentidly all elementsin Y refersto the fact that there are afew
vauesy € Y for whichitiseasytofindanz € X suchthaty = f(x). For example,
one may computey = f(x) for a small number of z values and then for these, the
inverse is known by table look-up. An alternate way to describe this property of a
one-way function is the following: for arandomy € Im(f) it is computationally
infeasibleto find any « € X suchthat f(z) = y.

The concept of aone-way function isillustrated through the following examples.
Example (one-way function) Teke X = {1,2,3,...,16} and define f(z) = r, for dl
z € X wherer, isthe remainder when 3* isdivided by 17. Explicitly,

z |1 2 3 45 6 7 8 9 10 11 12 13 14 15 16
f(z)|3 9 10 13 5 15 11 16 14 8 7 4 12 2 6 1

Given anumber between 1 and 16, itisrelatively easy to find theimage of it under f. How-
ever, given anumber such as 7, without having the table in front of you, it is harder to find
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1.15

1.16

z giventhat f(z) = 7. Of course, if thenumber you aregivenis3 thenitisclear thatz = 1
iswhat you need; but for most of the elementsin the codomain it is not that easy. O

One must keep in mind that this is an example which uses very small numbers; the
important point here is that there is a difference in the amount of work to compute f(z)
and the amount of work to find z given f(x). Even for very large numbers, f(z) can be
computed efficiently using the repeated square-and-multiply algorithm (Algorithm 2.143),
whereas the process of finding  from f(z) is much harder.

Example (one-way function) A prime number is a positive integer greater than 1 whose
only positive integer divisorsare 1 and itself. Select primesp = 48611, ¢ = 53993, form
n = pqg = 2624653723, and let X = {1,2,3,...,n — 1}. Define afunction f on X
by f(x) = r, foreachz € X, wherer, isthe remainder when 23 is divided by n. For
instance, f(2489991) = 1981394214 since 24899913 = 5881949859 - n 4 1981394214,
Computing f(z) isarelatively simplething to do, but to reversethe procedureis much more
difficult; that is, given a remainder to find the value = which was originally cubed (raised
tothethird power). Thisprocedureisreferred to asthe computation of amodular cube root
with modulus n. If the factors of n are unknown and large, thisis adifficult problem; how-
ever, if thefactorsp and g of n are known then thereis an efficient algorithm for computing
modular cube roots. (See §8.2.2(i) for details.) O

Example 1.15 leads one to consider another type of function which will prove to be
fundamental in later devel opments.

(iii) Trapdoor one-way functions

Definition A trapdoor one-way function is a one-way function f: X — Y with the
additional property that given some extrainformation (called the trapdoor information) it
becomesfeasibleto find for any giveny € Im(f), anz € X suchthat f(z) = y.

Example 1.15 illustrates the concept of a trapdoor one-way function. With the addi-
tional information of the factors of n = 2624653723 (namely, p = 48611 and ¢ = 53993,
each of which is five decimal digits long) it becomes much easier to invert the function.
Thefactors of 2624653723 are large enough that finding them by hand computation would
be difficult. Of course, any reasonable computer program could find the factors relatively
quickly. If, on the other hand, one selects p and ¢ to be very large distinct prime numbers
(each having about 100 decimal digits) then, by today’s standards, it is a difficult problem,
even with the most powerful computers, to deduce p and g Simply from n. Thisisthewell-
known integer factorization problem (see §3.2) and a source of many trapdoor one-way
functions.

It remainsto be rigoroudly established whether there actually are any (true) one-way
functions. That is to say, no one has yet definitively proved the existence of such func-
tions under reasonable (and rigorous) definitions of “easy” and “computationally infeasi-
ble”. Since the existence of one-way functionsis still unknown, the existence of trapdoor
one-way functionsis also unknown. However, there are a number of good candidates for
one-way and trapdoor one-way functions. Many of these are discussed in this book, with
emphasis given to those which are practical.

One-way and trapdoor one-way functions are the basis for public-key cryptography
(discussedin §1.8). Theimportance of these conceptswill become clearer when their appli-
cation to cryptographic techniquesis considered. It will be worthwhile to keep the abstract
concepts of this section in mind as concrete methods are presented.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.
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1.3.2 Permutations

1.17

1.18

1.19

Permutations are functions which are often used in various cryptographic constructs.

Definition Let S beafinite set of elements. A permutation p on S is abijection (Defini-
tion 1.8) from S to itself (i.e, p: S — S).

Example (permutation) LetS = {1,2,3,4,5}. A permutation p: S — S isdefined as
follows:

p(1) =3, p(2) =5, p(3) =4, p(4) =2, p(5) = 1.
A permutation can be described in variousways. It can bedisplayed asaboveor asan array:

1 2 3 4 5
p:<35421>’ )
where the top row in the array is the domain and the bottom row is the image under the
mapping p. Of course, other representations are possible. |

Since permutations are bijections, they have inverses. If apermutationiswritten asan
array (seel.1), itsinverseiseasily found by interchanging the rowsin the array and reorder-
ing the elementsin the new top row if desired (the bottom row would have to be reordered
correspondingly). Theinverse of p in Example 1.18isp ! = < ; i £1’> 3 g ) .
Example (permutation) Let X bethe set of integers {0, 1,2,... ,pq — 1} wherep and ¢
aredigtinct large primes (for example, p and ¢ are each about 100 decimal digitslong), and
supposethat neither p— 1 nor g—1 isdivisibleby 3. Thenthefunctionp(x) = r,, wherer,,
isthe remainder when z2 is divided by pq, can be shown to be a permutation. Determining
the inverse permutation is computationally infeasible by today’s standards unless p and ¢
are known (cf. Example 1.15). O

1.3.3 Involutions

1.20

121

Another type of function which will be referred to in §1.5.3 is an involution. Involutions
have the property that they are their own inverses.

Definition Let S beafinite set and let f be abijectionfromSto S (i.e, f: S — S).
The function f is called an involution if f = f~!. An equivalent way of stating this is
f(f(z)) =xfordlz € S.

Example (involution) Figure 1.4 is an example of an involution. In the diagram of an
involution, note that if j istheimage of i then ¢ isthe image of j. (]
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Figure 1.4: Aninvolution on a set S of 5 elements.

1.4 Basic terminology and concepts

The scientific study of any discipline must be built upon rigorous definitions arising from
fundamental concepts. What followsisalist of terms and basic concepts used throughout
this book. Where appropriate, rigor has been sacrificed (here in Chapter 1) for the sake of
clarity.

Encryption domains and codomains

o A denotesafinite set called the alphabet of definition. For example, A = {0, 1}, the

binary alphabet, is a frequently used alphabet of definition. Note that any alphabet
can beencoded interms of the binary al phabet. For example, sincethereare32 binary
strings of length five, each letter of the English aphabet can be assigned a unique
binary string of length five.

M denotes a set called the message space. M consists of strings of symbols from
an aphabet of definition. An element of M is called a plaintext message or simply
aplaintext. For example, M may consist of binary strings, English text, computer
code, etc.

C denotes a set called the ciphertext space. C consists of strings of symbolsfrom an
alphabet of definition, which may differ from the alphabet of definition for M. An
element of C is called a ciphertext.

Encryption and decryption transformations

e KC denotes a set called the key space. An element of /C is called akey.
e Each element e € K uniquely determines a bijection from M to C, denoted by E..

E. iscalled an encryption function or an encryption transformation. Note that E.
must be a bijection if the process is to be reversed and a unique plaintext message
recovered for each distinct ciphertext.’

e Foreachd € K, D, denotes a bijection fromC to M (i.e, Dy: C — M). Dy is

called a decryption function or decryption transformation.

e The process of applying the transformation E. to a messagem € M isusualy re-

ferred to as encrypting m or the encryption of m.

e Theprocess of applying thetransformation D to aciphertext c isusually referred to

as decrypting ¢ or the decryption of c.

IMore generdlity is obtained if E. issimply definedasal — 1 transformation from M to C. That isto say,
E. isabijection from M to Im(E. ) whereIm(E.) isasubset of C.
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1.22

e An encryption scheme consists of aset { E.: e € K} of encryption transformations
and acorresponding set { D,: d € K} of decryption transformations with the prop-
erty that for each e € K thereisauniquekey d € K suchthat D, = E1; that is,
Dy(E.(m)) = mfordl m € M. An encryption scheme is sometimes referred to
asacipher.

e Thekeyse and d in the preceding definition are referred to as a key pair and some-
times denoted by (e, d). Notethat e and d could be the same.

e To construct an encryption scheme requires one to select a message space M, aci-
phertext space C, akey space K, a set of encryption transformations { E. : e € K},
and a corresponding set of decryption transformations {D,: d € K}.

Achieving confidentiality

An encryption scheme may be used as followsfor the purpose of achieving confidentiality.
Two parties Alice and Bob first secretly choose or secretly exchange akey pair (e, d). Ata
subsequent point in time, if Alicewishesto send amessagem € M to Baob, she computes
¢ = E.(m) and transmits this to Bob. Upon receiving ¢, Bob computes Dy(¢) = m and
hence recovers the original message m.

The question arises asto why keysare necessary. (Why not just choose one encryption
function and its corresponding decryption function?) Having transformations which are
very similar but characterized by keys meansthat if some particular encryption/decryption
transformation is reveal ed then one does not have to redesign the entire scheme but simply
changethekey. Itissound cryptographic practiceto changethe key (encryption/decryption
transformation) frequently. Asaphysical analogue, consider an ordinary resettable combi-
nation lock. The structure of thelock isavailableto anyone who wishesto purchase one but
the combination is chosen and set by the owner. If the owner suspectsthat the combination
has been revealed he can easily reset it without replacing the physical mechanism.

Example (encryption scheme) Let M = {mj, mg,m3} and C = {c1,cz,c3}. There
are precisely 3! = 6 bijections from M to C. The key space X = {1,2,3,4,5,6} has
six elementsin it, each specifying one of the transformations. Figure 1.5 illustrates the six
encryption functions which aredenoted by £;,1 < i < 6. Aliceand Bob agree on atrans-

Ey E» E3
mi oc mi1 O——»0C1 mi1 O——»0OC1
mo O C2 mo Z><o C2 ma O——»0O C2
ms3 O C3 ms O c3 m3 O——»0O C3
Ey Es Eg
mi c1 mi z><0 C1 m1 C1
ma O C2 ma O C2 ma2 O C2
m3 c3 m3 o——»0 c3 ms3 O c3

Figure 1.5: Schematic of a simple encryption scheme.

formation, say E;. To encrypt the message m4, Alice computes E;(m1) = c3 and sends
c3 to Bob. Bob decrypts c3 by reversing the arrows on the diagram for £; and observing
that c3 pointsto m;.
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When M isasmall set, the functional diagram isasimplevisua meansto describethe
mapping. In cryptography, the set M istypically of astronomical proportionsand, as such,
the visual description isinfeasible. What is required, in these cases, is some other simple
means to describe the encryption and decryption transformations, such as mathematical al-
gorithms. |

Figure 1.6 provides a simple model of a two-party communication using encryption.

Adversary
A
encrypton | | ¢ YV N decryption
E.(m)=c UNSECURED CHANNEL Dgy(c) =m
dm LA
laintext
P destination
source
Alice Bob

Figure 1.6: Schematic of a two-party communication using encryption.

Communication participants
Referring to Figure 1.6, the following terminology is defined.

e An entity or party is someone or something which sends, receives, or manipulates
information. Alice and Bob are entitiesin Example 1.22. An entity may be a person,
a computer terminal, etc.

e A sender isan entity inatwo-party communication whichisthelegitimatetransmitter
of information. In Figure 1.6, the sender is Alice.

e A receiver isan entity in atwo-party communication which is the intended recipient
of information. In Figure 1.6, the receiver is Bob.

e Anadversaryisan entity in atwo-party communication which is neither the sender
nor receiver, and which triesto defeat theinformation security servicebeing provided
between the sender and receiver. Various other names are synonymous with adver-
sary such asenemy, attacker, opponent, tapper, eavesdropper, intruder, and interl oper.
An adversary will often attempt to play the role of either the legitimate sender or the
legitimate receiver.

Channels

e A channel isameans of conveying information from one entity to another.

e A physically secure channel or secure channel is one which is not physically acces-
sible to the adversary.

e An unsecured channel is one from which parties other than those for which the in-
formation isintended can reorder, delete, insert, or read.

e A secured channel isonefrom which an adversary does not havetheability to reorder,
delete, insert, or read.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.
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1.23

One should note the subtle difference between a physically secure channel and a se-
cured channel —a secured channel may be secured by physical or cryptographic techniques,
thelatter being thetopic of thisbook. Certain channelsare assumed to be physically secure.
Theseincludetrusted couriers, personal contact between communicating parties, and aded-
icated communication link, to name afew.

Security

A fundamental premisein cryptography isthat the sets M,C,K,{E.: e € K}, {Dq4: d €
K} are public knowledge. When two parties wish to communicate securely using an en-
cryption scheme, the only thing that they keep secret isthe particular key pair (e, d) which
they are using, and which they must select. One can gain additional security by keeping the
class of encryption and decryption transformations secret but one should not base the secu-
rity of the entire scheme on this approach. History has shown that maintaining the secrecy
of the transformationsis very difficult indeed.

Definition An encryption scheme is said to be breakable if a third party, without prior
knowledge of the key pair (e, d), can systematically recover plaintext from corresponding
ciphertext within some appropriate time frame.

An appropriate time frame will be a function of the useful lifespan of the data being
protected. For example, aninstructionto buy acertain stock may only need to be kept secret
for a few minutes whereas state secrets may need to remain confidential indefinitely.

An encryption scheme can be broken by trying all possible keysto see which one the
communicating parties are using (assuming that the class of encryption functionsis public
knowledge). Thisis called an exhaustive search of the key space. It follows then that the
number of keys(i.e., thesize of the key space) should belarge enough to makethisapproach
computationally infeasible. It isthe objective of adesigner of an encryption schemethat this
be the best approach to break the system.

Frequently cited in the literature are Kerckhoffs' desiderata, a set of requirements for
cipher systems. They are given here essentially as Kerckhoffsoriginally stated them:

1. the system should be, if not theoretically unbreakable, unbreakable in practice;
compromise of the system details should not inconvenience the correspondents;
the key should be rememberable without notes and easily changed;
the cryptogram should be transmissible by telegraph;
the encryption apparatus should be portable and operable by a single person; and
the system should be easy, requiring neither the knowledge of along list of rules nor
mental strain.
Thislist of requirementswasarticulatedin 1883 and, for themost part, remainsuseful today.

Point 2 allows that the class of encryption transformations being used be publicly known
and that the security of the system should reside only in the key chosen.

o0k WD

Information security in general

So far the terminol ogy has been restricted to encryption and decryption with the goal of pri-
vacy in mind. Information security is much broader, encompassing such things as authen-
tication and dataintegrity. A few more general definitions, pertinent to discussionslater in
the book, are given next.

¢ Aninformation security service isamethod to provide some specific aspect of secu-
rity. For example, integrity of transmitted data is a security objective, and a method
to ensure this aspect is an information security service.
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e Breaking aninformation security service (which often involves morethan simply en-
cryption) implies defeating the objective of the intended service.

e A passiveadversaryisan adversary who is capable only of reading information from
an unsecured channel.

e An active adversary is an adversary who may also transmit, alter, or delete informa-
tion on an unsecured channel.

Cryptology

e Cryptanalysisisthe study of mathematical techniquesfor attempting to defeat cryp-
tographic techniques, and, more generally, information security services.

e A cryptanalyst is someone who engagesin cryptanaysis.

e Cryptology isthe study of cryptography (Definition 1.1) and cryptanalysis.

e A cryptosystemis a genera term referring to a set of cryptographic primitives used
to provide information security services. Most often the term is used in conjunction
with primitives providing confidentiality, i.e., encryption.

Cryptographic techniques are typically divided into two generic types. symmetric-key
and public-key. Encryption methods of these typeswill be discussed separately in §1.5 and
§1.8. Other definitions and terminology will be introduced as required.

1.5 Symmetric-key encryption

§1.5 considers symmetric-key encryption. Public-key encryption is the topic of §1.8.

1.5.1 Overview of block ciphers and stream ciphers

1.24 Definition Consider an encryption scheme consisting of the sets of encryption and de-
cryptiontransformations{E..: e € K} and {D,: d € K}, respectively, where K isthe key
space. The encryption scheme is said to be symmetric-key if for each associated encryp-
tion/decryption key pair (e, d), itis computationally “easy” to determine d knowing only e,
and to determine e from d.

Sincee = d inmost practical symmetric-key encryption schemes, the term symmetric-
key becomesappropriate. Other termsusedintheliteratureare single-key, one-key, private-
key,? and conventional encryption. Example 1.25 illustrates the idea of symmetric-key en-
cryption.

1.25 Example (symmetric-key encryption) Let A = {A,B,C,...,X,Y,Z} be the English
alphabet. Let M and C be the set of al strings of length five over A. Thekey e is chosen
to be a permutation on .A. To encrypt, an English message is broken up into groups each
having five letters (with appropriate padding if the length of the message is not amultiple
of five) and a permutation e is applied to each letter one at atime. To decrypt, the inverse
permutation d = e~ is applied to each letter of the ciphertext. For instance, suppose that
the key e is chosen to be the permutation which maps each letter to the one which isthree
positionsto its right, as shown below

_ (ABCDEFGHI JKLMNOPQRSTUVWXYZ
€= DEFGHI JKLMNOPQRSTUVWXY ZABC

2Private key is aterm also used in quite a different context (see §1.8). The term will be reserved for the latter
usage in this book.
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A message
m = THISC IPHER ISCER TAINL YNOTS ECURE
isencrypted to
¢ = E.(m) = WKLVF LSKHU LVFHU WDLQO BQRWYV HFXUH. (|

A two-party communication using symmetric-key encryption can be described by the
block diagram of Figure 1.7, whichis Figure 1.6 with the addition of the secure (both con-

Adversary
A
key e SECURE CHANNEL
source
ve v
encrypton | | ¢ YV N decryption
E.(m)=c UNSECURED CHANNEL Dy(c) =m
A m
m Y
plaintext .
destination
source
Alice Bob

Figure 1.7: Two-party communication using encryption, with a secure channel for key exchange.
The decryption key d can be efficiently computed from the encryption key e.

fidential and authentic) channel. One of the major issues with symmetric-key systemsisto
find an efficient method to agree upon and exchange keys securely. Thisproblemisreferred
to as the key distribution problem (see Chapters 12 and 13).

Itisassumedthat al partiesknow the set of encryption/decryptiontransformations(i.e.,
they all know the encryption scheme). Ashasbeen emphasized several timesthe only infor-
mation which should be required to be kept secret isthe key d. However, in symmetric-key
encryption, this means that the key e must also be kept secret, as d can be deduced from
e. In Figure 1.7 the encryption key e is transported from one entity to the other with the
understanding that both can construct the decryption key d.

There are two classes of symmetric-key encryption schemes which are commonly dis-
tinguished: block ciphers and stream ciphers.

Definition A block cipher is an encryption scheme which breaks up the plaintext mes-
sages to be transmitted into strings (called blocks) of a fixed length ¢ over an aphabet A,
and encrypts one block at atime.

Most well-known symmetric-key encryption techniques are block ciphers. A number
of examples of these are given in Chapter 7. Two important classes of block ciphers are
substitution ciphers and transposition ciphers (§1.5.2). Product ciphers (§1.5.3) combine
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these. Stream ciphersare considered in §1.5.4, while comments on the key spacefollow in
§1.5.5.

1.5.2 Substitution ciphers and transposition ciphers

1.27

1.28

1.29

Substitution ciphers are block ciphers which replace symbols (or groups of symbols) by
other symbols or groups of symbols.

Simple substitution ciphers

Definition Let A be an aphabet of ¢ symbols and M be the set of al strings of length
t over A. Let K be the set of al permutations on the set A. Define for eache € K an
encryption transformation E.. as.

Ec(m) = (e(m1)e(mz)---e(my)) = (c1c2---¢r) = ¢,

wherem = (myms---m;) € M. Inother words, for each symbol in a¢-tuple, replace
(substitute) it by another symbol from .4 according to some fixed permutation e. To decrypt
¢ = (c1ca -+ - ¢;) compute the inverse permutation d = e~ and

Dy(c) = (d(er)d(e2) -+ - d(et)) = (mimg - --my) = m.
E. iscaled asimple substitution cipher or a mono-al phabetic substitution cipher.

The number of distinct substitution ciphersisq! and isindependent of the block sizein
the cipher. Example 1.25 is an example of asimple substitution cipher of block lengthfive.

Simple substitution ciphers over small block sizes provide inadeguate security even
when the key space is extremely large. If the alphabet is the English alphabet asin Exam-
ple 1.25, then the size of the key spaceis 26! ~ 4 x 1029, yet the key being used can be
determined quite easily by examining amodest amount of ciphertext. Thisfollowsfromthe
simple observation that the distribution of |etter frequenciesis preserved in the ciphertext.
For example, the letter E occurs more frequently than the other lettersin ordinary English
text. Hence the letter occurring most frequently in a sequence of ciphertext blocksis most
likely to correspond to the letter E in the plaintext. By observing a modest quantity of ci-
phertext blocks, a cryptanalyst can determine the key.

Homophonic substitution ciphers

Definition To each symbol a € A, associate a set H(a) of strings of ¢ symbols, with
the restriction that the sets H(a), a € A, be pairwise digjoint. A homophonic substitution
cipher replaces each symbol a in a plaintext message block with arandomly chosen string
from H(a). To decrypt a string ¢ of ¢ symbols, one must determine an a € A such that
¢ € H(a). Thekey for the cipher consists of the sets H (a).

Example (homophonic substitution cipher) Consider A = {a,b}, H(a) = {00, 10}, and
H(b) = {01,11}. The plaintext message block ab encryptsto one of the following: 0001,
0011, 1001, 1011. Observe that the codomain of the encryption function (for messages of
length two) consists of the following pairwise digjoint sets of four-element bitstrings:

aa —> {0000,0010,1000,1010}

ab — {0001,0011,1001,1011}

ba — {0100,0110,1100,1110}

bb — {0101,0111,1101,1111}

Any 4-bitstring uniquely identifies a codomain element, and hence a plaintext message. [J
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1.30

1.31

1.32

Often the symbols do not occur with equal frequency in plaintext messages. With a
simple substitution cipher this non-uniform frequency property isreflected in the ciphertext
asillustrated in Example 1.25. A homophonic cipher can be used to make the frequency of
occurrence of ciphertext symbols more uniform, at the expense of data expansion. Decryp-
tionisnot as easily performed asit is for simple substitution ciphers.

Polyalphabetic substitution ciphers

Definition A polyal phabetic substitution cipher isablock cipher with block length ¢ over
an alphabet A having the following properties:
(i) thekey space KC consists of all ordered sets of ¢ permutations (p1, pa, - - . ,pt), Where
each permutation p; is defined on the set A;
(ii) encryption of the message m = (mims - - - my) under thekey e = (p1,p2,... ,0t)
isgiven by E.(m) = (p1(m1)p2(mz) - - - ps(my)); and
(iii) thedecryptionkey associatedwithe = (p1,pa, - -. ,pt)isd = (p; L,py by .o, b).

Example (Mgenerecipher) Let A = {A,B,C,... ,X,Y,Z} andt = 3. Choosee =
(p1, p2,p3), Wherep; mapseach |etter to theletter three positionsto itsright in the al phabet,
o to the one seven positionsto its right, and p3 ten positionsto itsright. If

m = THI SCI PHE RIS CER TAINLY NOT SEC URE
then
¢ = E.(m) =WOS VJS SOO UPC FLB WHS QSI QVD VLM XYO. O

Polyal phabetic ciphers have the advantage over simple substitution ciphersthat symbol
frequenciesare not preserved. Inthe example above, theletter E is encrypted to both O and
L. However, polyal phabetic ciphers are not significantly more difficult to cryptanalyze, the
approach being similar to the simple substitution cipher. In fact, once the block length ¢ is
determined, the ciphertext letters can be divided into ¢ groups (where group i, 1 < i < ¢,
consists of those ciphertext letters derived using permutation p;), and afrequency analysis
can be done on each group.

Transposition ciphers

Another class of symmetric-key ciphersis the simple transposition cipher, which simply
permutes the symbolsin a block.

Definition Consider asymmetric-key block encryption schemewith block lengtht. Let K
betheset of all permutationsontheset {1,2,... ,t¢}. Foreache € K definetheencryption
function

Ee(m) = (me1yme(2) « ** Me())

wherem = (myms - --my) € M, the message space. The set of al such transformations
iscalled asimpletransposition cipher. The decryption key correspondingto e istheinverse
permutationd = e~ '. Todecryptc = (cicz - - - ¢¢), compute Dg(c) = (cy1)Ca(2) - - - Car))-

A simple transposition cipher preserves the number of symbols of a given type within
ablock, and thusis easily cryptanayzed.
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1.5.3 Composition of ciphers

1.33

1.34

In order to describe product ciphers, the concept of composition of functionsisintroduced.
Compositions are a convenient way of constructing more complicated functions from sim-
pler ones.

Composition of functions

Definition LetS, 7, and U/ befinitesetsandlet f: S — 7 andg: T — U be func-
tions. The composition of g with f, denoted g o f (or smply gf), isafunction from S to
U asillustrated in Figure 1.8 and defined by (g o f)(z) = g(f(x)) forallz € S.

Figure 1.8: The composition g o f of functionsg and f.

Composition can be easily extended to more than two functions. For functions f1, fa,
., fi,onecandefine f;o- - -0 fy0 f1, provided that the domain of f; equalsthe codomain
of f;—1 and so on.

Compositions and involutions

Involutionswereintroducedin §1.3.3 asasimpleclassof functionswith an interesting prop-
erty: Ei(E(z)) = z foral z inthedomain of Ey; thatis, E), o Ey, istheidentity function.

Remark (composition of involutions) The composition of two involutionsis not necessar-
ily aninvolution, asillustrated in Figure 1.9. However, involutionsmay be composed to get
somewhat more complicated functionswhoseinversesare easy tofind. Thisisanimportant
feature for decryption. For exampleif Ey, , Ey,, ... , Ex, areinvolutions then the inverse
of Ey, = Ey, Ey, -+ Ef, 1S Ek‘1 = Ey,Ey,_, - -+ E,, the composition of the involutions
in the reverse order.

1 1 10—»01 1 1

22><22 2 02 2 2

3 3 3><o3 3 3

4z><z4 40—»04 4 04
f g gof

Figure 1.9: The composition g o f of involutions g and f is not an involution.
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1.35

1.36

Product ciphers

Simple substitution and transposition ciphersindividually do not provide avery high level
of security. However, by combining these transformationsit is possible to obtain strong ci-
phers. Aswill be seen in Chapter 7 some of the most practical and effective symmetric-key
systems are product ciphers. One example of a product cipher is a composition of ¢ > 2
transformations Ey, Ey, - - - Ex, Whereeach Ey,, 1 < ¢ < ¢, iseither a substitution or a
transposition cipher. For the purpose of thisintroduction, let the composition of a substitu-
tion and atransposition be called around.

Example (product cipher) Let M = C = K bethe set of al binary strings of length six.
The number of elementsin M is25 = 64. Let m = (myms - - - mg) and define

E,(cl)(m) = mak, wherek € K,
E(Z) (m) = (m4m5m6m1m2m3)’

Here, @ is the exclusive-OR (XOR) operation defined as follows: 0 0 = 0,0 1 = 1,
190 =1,161 = 0. E{" isapolyaphabetic substitution cipher and E(2) is a trans-
position cipher (not involving the key). The product E,(CI)E(Q) isaround. While here the
transposition cipher is very simple and is not determined by the key, this need not be the
case. (]

Remark (confusionand diffusion) A substitutionin around issaid to add confusion to the
encryption process whereas a transposition is said to add diffusion. Confusion is intended
to make the relationship between the key and ciphertext as complex as possible. Diffusion
refersto rearranging or spreading out the bits in the message so that any redundancy in the
plaintext is spread out over the ciphertext. A round then can be said to add both confu-
sion and diffusion to the encryption. Most modern block cipher systems apply a number of
rounds in succession to encrypt plaintext.

1.5.4 Stream ciphers

1.37

1.38

Stream ciphersform an important class of symmetric-key encryption schemes. They are, in
one sense, very simple block ciphers having block length equal to one. What makes them
useful is the fact that the encryption transformation can change for each symbol of plain-
text being encrypted. In situations where transmission errors are highly probable, stream
ciphers are advantageous because they have no error propagation. They can also be used
when the datamust be processed one symbol at atime (e.g., if the equipment hasno memory
or buffering of dataislimited).

Definition Let K bethe key space for aset of encryption transformations. A sequence of
symbolseieses - - - e; € K, iscaled akeystream.

Definition Let .4 be an alphabet of ¢ symbolsand let E,. be a simple substitution cipher
with block length 1 wheree € K. Let mymoms - - - beaplaintext stringand let ejeses - - -
beakeystreamfrom IC. A stream cipher takesthe plaintext string and produces a ciphertext
string cicacs - - - wherec; = E., (m;). If d; denotestheinverse of e;, then Dy, (¢;) = my
decrypts the ciphertext string.
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1.39

A stream cipher applies simple encryption transformations according to the keystream
being used. The keystream could be generated at random, or by an algorithm which gen-
erates the keystream from an initial small keystream (called a seed), or from a seed and
previous ciphertext symbols. Such an algorithm is called a keystream generator.

The Vernam cipher
A motivating factor for the Vernam cipher was its smplicity and ease of implementation.

Definition The Vlernam Cipher is a stream cipher defined on the alphabet A = {0,1}. A
binary message mims - - - m; is operated on by abinary key string k1 k> - - - k; of the same
length to produce a ciphertext string c1 ¢z - - - ¢ where

cG=m;Dk;, 1<i<t

If the key string is randomly chosen and never used again, the Vernam cipher is called a
one-time system or a one-time pad.

To see how the Vernam cipher corresponds to Definition 1.38, observe that there are
precisely two substitution ciphers on the set A. One is simply the identity map E, which
sends0to0 and 1 to 1; the other F; sends0 to 1 and 1 to 0. When the keystream contains
a0, apply Ej tothe corresponding plaintext symbol; otherwise, apply E;.

If thekey stringisreused therearewaysto attack the system. For example, if c1cs - - - ¢;
and ¢ c, - - - ¢} are two ciphertext strings produced by the same keystream k1 k» - - - k; then

/ !
ci=m; @k, c;=m;Dk;

and ¢; & ¢; = m; & m}. Theredundancy in the latter may permit cryptanalysis.

The one-time pad can be shown to be theoretically unbreakable. That is, if acryptana
lyst has a ciphertext string ¢y co - - - ¢; encrypted using arandom key string which has been
used only once, the cryptanalyst can do no better than guess at the plaintext being any bi-
nary string of length ¢ (i.e., ¢-bit binary strings are equally likely as plaintext). It has been
proventhat to realize an unbreakabl e system requiresarandom key of the samelength asthe
message. This reducesthe practicality of the systemin al but afew specialized situations.
Reportedly until very recently the communication line between Moscow and Washington
was secured by a one-time pad. Transport of the key was done by trusted courier.

1.5.5 The key space

1.40

Thesize of thekey spaceisthe number of encryption/decryptionkey pairsthat areavailable
in the cipher system. A key istypically a compact way to specify the encryption transfor-
mation (from the set of all encryption transformations) to be used. For example, atranspo-
sition cipher of block length ¢ has ¢! encryption functions from which to select. Each can
be simply described by a permutation which is called the key.

Itisagreat temptation to relate the security of the encryption scheme to the size of the
key space. The following statement isimportant to remember.

Fact A necessary, but usually not sufficient, condition for an encryption scheme to be se-
cure isthat the key space be large enough to preclude exhaustive search.

For instance, the simple substitution cipher in Example 1.25 has a key space of size
26! ~ 4 x 102%. The polyal phabetic substitution cipher of Example 1.31 has a key space
of size (26!)® ~ 7 x 107, Exhaustive search of either key spaceis completely infeasible,
yet both ciphers are relatively weak and provide little security.
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1.6 Digital signatures

1.41

1.42

A cryptographic primitive which is fundamental in authentication, authorization, and non-
repudiationisthedigital signature. The purpose of adigital signatureisto provideameans
for an entity to bind its identity to a piece of information. The process of signing entails
transforming the message and some secret information held by the entity into atag called
asignature. A generic description follows.

Nomenclature and set-up

M isthe set of messages which can be signed.

S isaset of elements called signatures, possibly binary strings of afixed length.

S 4 isatransformation from the message set M to the signature set S, and is called
asigning transformation for entity A.3 The transformation S 4 is kept secret by A,
and will be used to create signatures for messages from M.

V4 is atransformation from the set M x S to the set {true, false}.* V4 iscalled
a verification transformation for A’'s signatures, is publicly known, and is used by
other entitiesto verify signatures created by A.

Definition Thetransformations.S 4 and V4 provideadigital signature schemefor A. Oc-
casionally the term digital signature mechanismis used.

Example (digital signature scheme) M = {m1,ma,m3} and S = {s1, s2, s3}. Theleft
side of Figure 1.10 displays a signing function S 4 from the set M and, the right side, the

corresponding verification function V4.

O

83
S1

S2
True

False

( )
( )
( )
( )
Sa (ma, 52)
( )
( )
( )
( )

Va

Figure 1.10: A signing and verification function for a digital signature scheme.

3The names of Alice and Bob are usually abbreviated to A and B, respectively.
4 M x S consists of al pairs (m, s) wherem € M, s € S, called the Cartesian product of M and S.
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1.43

1.44

Signing procedure

Entity A (the signer) creates asignature for amessage m € M by doing the following:
1. Compute s = Sa(m).
2. Transmit the pair (m, s). s iscalled the signature for message m.

Verification procedure

To verify that a signature s on a message m was created by A, an entity B (the verifier)
performs the following steps:

1. Obtain the verification function V4 of A.

2. Computeu = V4 (m, s).

3. Accept the signature as having been created by A if u = true, and reject the signature
if u=false.

Remark (conciserepresentation) Thetransformations.S4 and V4 aretypically character-
ized more compactly by akey; that is, thereisaclass of signing and verification algorithms
publicly known, and each algorithm isidentified by a key. Thus the signing algorithm S 4
of A isdetermined by akey k4 and A is only required to keep k4 secret. Similarly, the
verification algorithm V4 of A isdetermined by akey [ 4 which is made public.

Remark (handwritten signatures) Handwritten signatures could be interpreted as a spe-
cial class of digital signatures. To seethis, take the set of signatures S to contain only one
element which is the handwritten signature of A, denoted by s 4. The verification function
simply checksif the signature on a message purportedly signed by A iSs4.

An undesirablefeature in Remark 1.44 isthat the signature is not message-dependent.
Hence, further constraints are imposed on digital signature mechanisms as next discussed.

Properties required for signing and verification functions
Thereare several propertieswhich the signing and verification transformations must satisfy.

(8 sisavalidsignature of A on messagem if and only if V4 (m, s) = true.
(b) Itiscomputationally infeasible for any entity other than A to find, for any m € M,
an s € S suchthat V4 (m, s) = true.

Figure 1.10 graphically displays property (a). Thereisan arrowed line in the diagram
for V4 from (m;, s;) to true provided thereis an arrowed line from m; to s; inthe diagram
for S4. Property (b) provides the security for the method — the signature uniquely binds A
to the message which is signed.

No one has yet formally proved that digital signature schemes satisfying (b) exist (al-
though existence is widely believed to be true); however, there are some very good can-
didates. §1.8.3 introduces a particular class of digital signatures which arise from public-
key encryption techniques. Chapter 11 describesanumber of digital signature mechanisms
which are believed to satisfy the two properties cited above. Although the description of a
digital signature given in this section is quite general, it can be broadened further, as pre-
sented in §11.2.
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1.7 Authentication and identification

Authentication is aterm which is used (and often abused) in a very broad sense. By itself
it has little meaning other than to convey the idea that some means has been provided to
guarantee that entities are who they claim to be, or that information has not been manip-
ulated by unauthorized parties. Authentication is specific to the security objective which
oneistrying to achieve. Examples of specific objectivesinclude access control, entity au-
thentication, message authentication, data integrity, non-repudiation, and key authentica-
tion. These instances of authentication are dealt with at length in Chapters 9 through 13.
For the purposes of this chapter, it sufficesto give a brief introduction to authentication by
describing several of the most obvious applications.

Authentication is one of the most important of all information security objectives. Un-
til themid 1970sit was generally believed that secrecy and authentication wereintrinsically
connected. With the discovery of hash functions (§1.9) and digital signatures (§1.6), it was
realized that secrecy and authentication were truly separate and independent information
security objectives. It may at first not seem important to separate the two but there are situ-
ationswhereit isnot only useful but essential. For example, if atwo-party communication
between Alice and Baob is to take place where Alice is in one country and Bob in another,
the host countries might not permit secrecy on the channel; one or both countries might
want the ability to monitor all communications. Alice and Bob, however, would like to be
assured of the identity of each other, and of the integrity and origin of the information they
send and receive.

The preceding scenarioillustrates several independent aspects of authentication. If Al-
ice and Bob desire assurance of each other’sidentity, there are two possibilitiesto consider.

1. Aliceand Bob could be communicating with no appreciabletime delay. That is, they
are both active in the communication in “real time”.

2. Alice or Bob could be exchanging messages with some delay. That is, messages
might be routed through various networks, stored, and forwarded at some later time.

In the first instance Alice and Bob would want to verify identitiesin real time. This
might be accomplished by Alice sending Bob some challenge, to which Bob is the only
entity which can respond correctly. Bob could perform a similar action to identify Alice.
Thistype of authenticationis commonly referred to as entity authentication or moresimply
identification.

For the second possibility, it is not convenient to challenge and await response, and
moreover the communication path may be only in one direction. Different techniques are
now required to authenticate the originator of the message. Thisform of authenticationis
called data origin authentication.

1.7.1 Identification

1.45 Definition Anidentification or entity authentication technique assuresone party (through
acquisition of corroborative evidence) of both the identity of a second party involved, and
that the second was active at the time the evidence was created or acquired.

Typically the only datatransmitted isthat necessary to identify the communicating par-
ties. The entities are both active in the communication, giving a timeliness guarantee.
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1.46 Example (identification) A calls B on the telephone. If A and B know each other then
entity authentication is provided through voice recognition. Although not foolproof, this
works effectively in practice. O

1.47 Example (identification) Person A provides to a banking machine a personal identifica-
tion number (PIN) along with a magnetic stripe card containing information about A. The
banking machine uses the information on the card and the PIN to verify the identity of the
card holder. If verification succeeds, A is given access to various services offered by the
machine. O

Example 1.46 isan instance of mutual authentication whereas Example 1.47 only pro-
vides unilateral authentication. Numerous mechanisms and protocols devised to provide
mutual or unilateral authentication are discussed in Chapter 10.

1.7.2 Data origin authentication

1.48 Definition Data origin authentication or message authentication techniques provide to
one party which receivesamessage assurance (through corroborative evidence) of theiden-
tity of the party which originated the message.

Often amessageis provided to B along with additional information so that B can de-
termine the identity of the entity who originated the message. This form of authentication
typically provides no guarantee of timeliness, but is useful in situations where one of the
partiesis not active in the communication.

1.49 Example (need for data origin authentication) A sendsto B an electronic mail message
(e-mail). Themessage may travel through vari ous network communications systemsand be
storedfor B toretrieve at somelater time. A and B are usually not in direct communication.
B would like some means to verify that the message received and purportedly created by
A did indeed originate from A. O

Data origin authentication implicitly provides dataintegrity since, if the message was
modified during transmission, A would no longer be the originator.

1.8 Public-key cryptography

The concept of public-key encryption is simple and elegant, but has far-reaching conse-
quences.

1.8.1 Public-key encryption

Let {E.: e € K} beaset of encryption transformations, and let {D,: d € K} bethe set of
corresponding decryption transformations, where /C is the key space. Consider any pair of
associated encryption/decryption transformations (E.., D) and suppose that each pair has
the property that knowing E. it is computationally infeasible, given a random ciphertext
¢ € C, tofind the messagem € M suchthat E.(m) = ¢. This property impliesthat given
e it isinfeasible to determine the corresponding decryption key d. (Of course e and d are
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simply means to describe the encryption and decryption functions, respectively.) E. isbe-
ing viewed here as atrapdoor one-way function (Definition 1.16) with d being the trapdoor
information necessary to compute the inverse function and hence allow decryption. Thisis
unlike symmetric-key cipherswhere e and d are essentially the same.

Under these assumptions, consider the two-party communication between Alice and
Bobillustrated in Figure 1.11. Bob selectsthekey pair (e, d). Bob sendsthe encryption key
e (calledthe public key) to Alice over any channel but keepsthe decryptionkey d (called the
private key) secure and secret. Alice may subsequently send a message m to Bob by apply-
ing the encryption transformation determined by Bob’s public key to get ¢ = E.(m). Bob
decrypts the ciphertext ¢ by applying the inverse transformation D, uniquely determined
by d.

Passive
Adversary
A
e Y || key
: UNSECURED CHANNEL source
|
|
7 Ve
encrypton | | ¢ Y__|,| decryption
Ee(m) —c UNSECURED CHANNEL Dd(c) = m
- "
laintext
P destination
source
Alice Bob

Figure 1.11: Encryption using public-key techniques.

Notice how Figure 1.11 differs from Figure 1.7 for a symmetric-key cipher. Here the
encryption key is transmitted to Alice over an unsecured channel. This unsecured channel
may be the same channel on which the ciphertext is being transmitted (but see §1.8.2).

Since the encryption key e need not be kept secret, it may be made public. Any entity
can subsequently send encrypted messagesto Bob which only Bob can decrypt. Figure1.12
illustrates this idea, where A1, A,, and A3 are distinct entities. Note that if A; destroys
message m after encrypting it to ¢y, then even A; cannot recover m; from¢;.

As a physical analogue, consider a metal box with the lid secured by a combination
lock. The combination is known only to Bob. If the lock is left open and made publicly
available then anyone can place a message inside and lock the lid. Only Bob can retrieve
the message. Even the entity which placed the messageinto the box isunableto retrieveit.

Public-key encryption, as described here, assumes that knowledge of the public key e
does not allow computation of the private key d. In other words, this assumesthe existence
of trapdoor one-way functions (§1.3.1(iii)).

1.50 Definition Consider anencryptionscheme consisting of the setsof encryptionand decryp-
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Al | Ec(mi) =1 \
\ Dd(C1):ﬂ’L1

Az | Ee(m2) = c2 Da(c2) = ma

/ Dy(cs) = ms
As | Eo(ms) = /
s (ms) = ca e Bob

Figure 1.12: Schematic use of public-key encryption.

tiontransformations{ E. : e € K} and {Dy: d € K}, respectively. Theencryption method
is said to be a public-key encryption scheme if for each associated encryption/decryption
pair (e, d), onekey e (the public key) is made publicly available, whilethe other d (the pri-
vate key) is kept secret. For the scheme to be secure, it must be computationally infeasible
to compute d from e.

1.51 Remark (private key vs. secret key) To avoid ambiguity, a common convention is to use
theterm private key in association with public-key cryptosystems, and secret key in associ-
ation with symmetric-key cryptosystems. This may be motivated by the following line of
thought: it takes two or more parties to share a secret, but a key istruly private only when
one party alone knowsit.

There are many schemes known which are widely believed to be secure public-key
encryption methods, but none have been mathematically proven to be secure independent
of qualifying assumptions. Thisisnot unlike the symmetric-key case wherethe only system
which has been proven secure is the one-time pad (§1.5.4).

1.8.2 The necessity of authentication in public-key systems

It would appear that public-key cryptography isanideal system, not requiring asecurechan-
nel to passthe encryption key. Thiswould imply that two entities could communicate over
an unsecured channel without ever having met to exchange keys. Unfortunately, thisis not
the case. Figure 1.13 illustrates how an active adversary can defeat the system (decrypt
messages intended for a second entity) without breaking the encryption system. Thisisa
type of impersonation and is an example of protocol failure (see §1.10). In this scenario
the adversary impersonates entity B by sending entity A apublic key ¢’ which A assumes
(incorrectly) to be the public key of B. The adversary intercepts encrypted messages from
Ato B, decryptswith itsown private key d’, re-encryptsthe message under B’s public key
e, and sendsit on to B. Thishighlightsthe necessity to authenticate public keysto achieve
data origin authentication of the public keys themselves. A must be convinced that sheis
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encrypting under the legitimate public key of B. Fortunately, public-key techniques also
allow an elegant solution to this problem (see §1.11).

Adversary
] key
| source
|
! .
! d encryption I
! y Ec.(m)=c !
’
€l decryption 1 i 1
| Dg(d)y=m m ! :
| |
: . 1 :
I ! : I
1 | & ‘
v ! ! l
| , |
encryption | | 1€ key ¢
E.(m)=¢ source |
|
A ‘
m Ve |
|
plaintext decryption ol E
source Dy(c) =m
|
A
destination
B

Figure 1.13: Animpersonation attack on a two-party communication.

1.8.3 Digital signatures from reversible public-key encryption

This section considers a class of digital signature schemes which is based on public-key
encryption systems of a particular type.

Suppose E. is apublic-key encryption transformation with message space M and ci-
phertext space C. Suppose further that M = C. If D, is the decryption transformation
corresponding to E. then since E., and D, are both permutations, one has

Dy(E.(m)) = E.(Dgq(m)) =m, forallm e M.

A public-key encryption scheme of thistypeis called reversible.® Notethat it is essential
that M = C for thisto be avalid equality for al m € M; otherwise, D4(m) will be
meaninglessfor m ¢ C.

5Thereis a broader class of digital signatures which can be informally described as arising from irreversible
cryptographic algorithms. These are described in §11.2.
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Construction for a digital signature scheme

1. Let M be the message space for the signature scheme.

2. Let C = M bethe signature space S.

3. Let (e, d) beakey pair for the public-key encryption scheme.

4. Definethesigningfunction S, tobe Dy. Thatis, thesignaturefor amessagem € M
iss = Dy(m).

5. Define the verification function V4 by

| true, if E.(s) =m,
Va(m, s) = { false, otherwise.

The signature scheme can be simplified further if A only signs messages having a spe-
cial structure, and this structure is publicly known. Let M’ be a subset of M where ele-
ments of M’ have awell-defined specia structure, such that M’ contains only a negligi-
ble fraction of messages from the set. For example, suppose that M consists of all binary
strings of length 2t for some positiveinteger ¢. Let M’ be the subset of M consisting of all
strings where the first ¢ bits are replicated in the last ¢ positions (e.g., 101101 would bein
M’ fort = 3). If A only signs messages within the subset M’, these are easily recognized
by averifier.

Redefine the verification function V4 as

_ [ true, if E.(s) e M/,
Va(s) = { false, otherwise.

Under this new scenario A only needs to transmit the signature s since the message m =
E.(s) can be recovered by applying the verification function. Such a schemeis called a
digital signature scheme with message recovery. Figure 1.14 illustrates how this signature
function is used. The feature of selecting messages of special structure is referred to as

selecting messages with redundancy.
A e key
Ee(s) [™ source
]
i
‘m \ ¢ d
Accept
if m! € M Da(m) = s
- fm
Verifier B message
source
M/
Signer A

Figure 1.14: Adigital signature scheme with message recovery.

The modification presented above is more than asimplification; it is absolutely crucial
if one hopes to meet the requirement of property (b) of signing and verification functions
(see page 23). To see why thisisthe case, note that any entity B can select arandom ele-
ment s € S asasignature and apply E. toget u = E.(s), sinceS = M and E, ispublic
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1.52

knowledge. B may then take the message m = u and the signature on m to be s and trans-
mits (m, s). Itis easy to check that s will verify as a signature created by A for m but in
which A has had no part. In this case B hasforged asignature of A. Thisis an example of
what is called existential forgery. (B has produced A’s signature on some message likely
not of B’schoosing.)

If M’ contains only anegligible fraction of messagesfrom M, then the probability of
some entity forging asignature of A in this manner is negligibly small.

Remark (digital signaturesvs. confidentiality) Although digital signature schemes based
on reversible public-key encryption are attractive, they require an encryption method as a
primitive. Thereare situationswhere adigital signature mechanismisrequired but encryp-
tionisforbidden. In such cases these digital signature schemes are inappropriate.

Digital signatures in practice

For digital signatures to be useful in practice, concrete realizations of the preceding con-
cepts should have certain additional properties. A digital signature must

1. be easy to compute by the signer (the signing function should be easy to apply);

2. beeasy to verify by anyone (the verification function should be easy to apply); and

3. have an appropriate lifespan, i.e., be computationally secure from forgery until the
signature is no longer necessary for itsorigina purpose.

Resolution of disputes

The purpose of a digital signature (or any signature method) is to permit the resolution of
disputes. For example, an entity A could at some point deny having signed a message or
some other entity B could falsely claim that a signature on a message was produced by A.
In order to overcome such problems a trusted third party (TTP) or judgeis required. The
TTP must be some entity which all partiesinvolved agree upon in advance.

If A deniesthat a message m held by B was signed by A, then B should be able to
present the signature s 4 for m to the TTP along with m. The TTP rulesin favor of B if
Va(m,sa) = trueandinfavor of A otherwise. B will accept thedecision if B is confident
that the TTP hasthe same verifying transformation V4 as A does. A will accept the decision
if Aisconfidentthat the TTPused V4 and that S4 has not been compromised. Therefore,
fair resolution of disputes requires that the following criteria are met.

Requirements for resolution of disputed signatures
1. S, and V4 have properties (a) and (b) of page 23.
2. The TTP has an authentic copy of V4.
3. Thesigning transformation .S 4 has been kept secret and remains secure.

These properties are necessary but in practice it might not be possible to guarantee
them. For example, the assumption that S4 and V4 have the desired characteristics given
in property 1 might turn out to be false for a particular signature scheme. Another possi-
bility isthat A claimsfalsely that S 4 was compromised. To overcome these problems re-
quires an agreed method to validate the time period for which A will accept responsibility
for the verification transformation. An ana ogue of this situation can be made with credit
card revocation. The holder of acard isresponsibleuntil the holder notifiesthe card issuing
company that the card has been lost or stolen. §13.8.2 gives a more indepth discussion of
these problems and possible solutions.
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1.8.4 Symmetric-key vs. public-key cryptography

Symmetric-key and public-key encryption schemes have various advantages and disadvan-
tages, some of which are common to both. This section highlights a number of these and
summarizes features pointed out in previous sections.

(i) Advantages of symmetric-key cryptography

1

Symmetric-key ciphers can be designed to have high rates of datathroughput. Some
hardware implementations achieve encrypt rates of hundreds of megabytes per sec-
ond, while software implementations may attain throughput rates in the megabytes
per second range.

Keysfor symmetric-key ciphers are relatively short.

Symmetric-key ciphers can be employed as primitives to construct various crypto-
graphic mechanisms including pseudorandom number generators (see Chapter 5),
hash functions (see Chapter 9), and computationally efficient digital signature sch-
emes (see Chapter 11), to name just a few.

Symmetric-key ciphers can be composed to produce stronger ciphers. Simple trans-
formationswhich are easy to analyze, but on their own weak, can be used to construct
strong product ciphers.

Symmetric-key encryption isperceived to have an extensive history, although it must
be acknowledged that, notwithstanding the invention of rotor machinesearlier, much
of the knowledge in this area has been acquired subsequent to the invention of the
digital computer, and, in particular, the design of the Data Encryption Standard (see
Chapter 7) in the early 1970s.

(i) Disadvantages of symmetric-key cryptography

1
2.

3.

4,

In atwo-party communication, the key must remain secret at both ends.

In alarge network, there are many key pairsto be managed. Consequently, effective
key management requirestheuse of an unconditionally trusted TTP (Definition 1.65).
In atwo-party communication between entities A and B, sound cryptographic prac-
tice dictatesthat the key be changed frequently, and perhaps for each communication
session.

Digital signature mechanisms arising from symmetric-key encryption typicaly re-
quire either large keys for the public verification function or the use of a TTP (see
Chapter 11).

(iii) Advantages of public-key cryptography

1

2.

Only the private key must be kept secret (authenticity of public keys must, however,
be guaranteed).

The administration of keys on a network requires the presence of only afunctionally
trusted TTP (Definition 1.66) as opposed to an unconditionally trusted TTP. Depend-
ing on the mode of usage, the TTP might only be required in an “off-line” manner,
asopposedtoinrea time.

Depending on the mode of usage, aprivate key/public key pair may remain unchang-
ed for considerable periods of time, e.g., many sessions (even severa years).

Many public-key schemes yield relatively efficient digital signature mechanisms.
The key used to describe the public verification function is typically much smaller
than for the symmetric-key counterpart.
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5. Inalarge network, the number of keys necessary may be considerably smaller than
in the symmetric-key scenario.

(iv) Disadvantages of public-key encryption

1. Throughput rates for the most popular public-key encryption methods are several or-
ders of magnitude slower than the best known symmetric-key schemes.

2. Key sizesaretypically much larger than thoserequired for symmetric-key encryption
(see Remark 1.53), and the size of public-key signatures is larger than that of tags
providing data origin authentication from symmetric-key techniques.

3. No public-key scheme has been proven to be secure (the same can be said for block
ciphers). The most effective public-key encryption schemesfound to date have their
security based on the presumed difficulty of asmall set of number-theoretic problems.

4. Public-key cryptography does not have as extensive a history as symmetric-key en-
cryption, being discovered only in the mid 1970s.°

Summary of comparison

Symmetric-key and public-key encryption have a number of complementary advantages.
Current cryptographic systems exploit the strengths of each. An example will serveto il-
lustrate.

Public-key encryption techniques may be used to establish a key for a symmetric-key
system being used by communicating entities A and B. In this scenario A and B can take
advantage of the long term nature of the public/private keys of the public-key scheme and
the performance efficiencies of the symmetric-key scheme. Since data encryption is fre-
guently the most time consuming part of the encryption process, the public-key schemefor
key establishment is a small fraction of the total encryption process between A and B.

To date, the computational performance of public-key encryption isinferior to that of
symmetric-key encryption. There is, however, no proof that this must be the case. The
important pointsin practice are:

1. public-key cryptography facilitates efficient signatures (particul arly non-repudiation)
and key mangement; and

2. symmetric-key cryptography is efficient for encryption and some data integrity ap-
plications.

Remark (key sizes: symmetric key vs. private key) Private keys in public-key systems
must be larger (e.g., 1024 bitsfor RSA) than secret keysin symmetric-key systems(e.g., 64
or 128 bits) because whereas (for secure a gorithms) the most efficient attack on symmetric-
key systemsisan exhaustivekey search, all known public-key systemsare subject to “ short-
cut” attacks(e.g., factoring) more efficient than exhaustive search. Consequently, for equiv-
alent security, symmetric keys have bitlengths considerably smaller than that of privatekeys
in public-key systems, e.g., by afactor of 10 or more.

61t is, of course, arguable that some public-key schemeswhich are based on hard mathematical problems have
along history since these problems have been studied for many years. Although this may be true, one must be
wary that the mathematics was not studied with this application in mind.
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1.9 Hash functions

1.54

1.10

1.55

One of the fundamental primitivesin modern cryptography isthe cryptographic hash func-
tion, ofteninformally called aone-way hash function. A simplified definition for the present
discussion follows.

Definition A hashfunctionisacomputationally efficient function mapping binary strings
of arbitrary length to binary strings of some fixed length, called hash-values.

For ahash function which outputsn-bit hash-values(e.g., n = 128 or 160) and has de-
sirable properties, the probability that arandomly chosen string gets mapped to a particular
n-bit hash-value (image) is 2~ ". The basic ideais that a hash-value serves as a compact
representative of an input string. To be of cryptographic use, a hash function h istypically
chosen such that it is computationally infeasible to find two distinct inputs which hash to a
common value (i.e., two colliding inputs z and y such that h(z) = h(y)), and that given
aspecific hash-valuey, it is computationally infeasible to find an input (pre-image) = such
that h(x) = y.

The most common cryptographic uses of hash functionsarewith digital signaturesand
for dataintegrity. With digital signatures, along message is usually hashed (using a pub-
licly available hash function) and only the hash-value is signed. The party receiving the
message then hashes the received message, and verifies that the received signature is cor-
rect for this hash-value. This saves both time and space compared to signing the message
directly, which would typically involve splitting the message into appropriate-sized blocks
and signing each block individually. Note here that the inability to find two messages with
the same hash-value is a security requirement, since otherwise, the signature on one mes-
sage hash-valuewould be the same asthat on another, allowing asigner to sign one message
and at alater point in time claim to have signed another.

Hash functions may be used for dataintegrity asfollows. The hash-value correspond-
ing to a particular input is computed at some point in time. The integrity of this hash-value
is protected in some manner. At a subsequent point in time, to verify that the input data
has not been altered, the hash-value is recomputed using the input at hand, and compared
for equality with the original hash-value. Specific applicationsinclude virus protection and
software distribution.

A third application of hash functionsistheir use in protocolsinvolving a priori com-
mitments, including some digital signature schemes and identification protocols (e.g., see
Chapter 10).

Hash functions as discussed above are typically publicly known and involve no secret
keys. When used to detect whether the messageinput has been altered, they are called modi-
fication detection codes (MDCs). Relatedto theseare hash functionswhich involve asecret
key, and provide data origin authentication (§9.76) aswell asdataintegrity; thesearecalled
message authentication codes (MACS).

Protocols and mechanisms
Definition A cryptographic protocol (protocol) isadistributed algorithm defined by a se-
guence of steps precisely specifying the actionsrequired of two or more entitiesto achieve

a specific security objective.
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1.57

1.58

1.59

1.60

Remark (protocol vs. mechanism) As opposed to a protocol, a mechanismisamore gen-
eral term encompassing protocols, algorithms (specifying the stepsfollowed by asingle en-
tity), and non-cryptographic techniques (e.g., hardware protection and procedural controls)
to achieve specific security objectives.

Protocols play amajor rolein cryptography and are essential in meeting cryptographic
goasasdiscussed in §1.2. Encryption schemes, digital signatures, hash functions, and ran-
dom number generation are among the primitiveswhich may be utilized to build aprotocol.

Example (asimplekey agreement protocol) Alice and Bob have chosen a symmetric-key
encryption scheme to use in communicating over an unsecured channel. To encrypt infor-
mation they require a key. The communication protocol isthe following:

1. Bob constructsapublic-key encryption schemeand sendshispublickey to Aliceover
the channel.
Alice generates a key for the symmetric-key encryption scheme.
Alice encryptsthe key using Bob’s public key and sends the encrypted key to Bob.
Bob decrypts using his private key and recovers the symmetric (secret) key.
Alice and Bob begin communicating with privacy by using the symmetric-key sys-
tem and the common secret key.
This protocol uses basic functionsto attempt to realize private communicationson an unse-
cured channel. The basic primitives are the symmetric-key and the public-key encryption
schemes. The protocol has shortcomings including the impersonation attack of §1.8.2, but
it does convey the idea of a protocol. |

ag ko

Often the role of public-key encryption in privacy communicationsis exactly the one
suggested by this protocol — public-key encryption is used as a means to exchange keys
for subsequent use in symmetric-key encryption, motivated by performance differencesbe-
tween symmetric-key and public-key encryption.

Protocol and mechanism failure

Definition A protocol failure or mechanismfailure occurswhen amechanismfailsto meet
the goals for which it was intended, in a manner whereby an adversary gains advantage
not by breaking an underlying primitive such as an encryption algorithm directly, but by
mani pulating the protocol or mechanism itself.

Example (mechanismfailure) Alice and Bob are communicating using a stream cipher.
M essages which they encrypt are known to have a special form: the first twenty bits carry
information which represents amonetary amount. An active adversary can simply XOR an
appropriate hitstring into the first twenty bits of ciphertext and change the amount. While
the adversary has not been able to read the underlying message, she has been able to alter
the transmission. The encryption has not been compromised but the protocol has failed to
perform adequately; the inherent assumption that encryption provides data integrity isin-
correct. (|

Example (forward search attack) Suppose that in an electronic bank transaction the 32-
bit field which records the value of the transaction is to be encrypted using a public-key
scheme. This simple protocol is intended to provide privacy of the value field — but does
it? An adversary could easily takeall 232 possible entriesthat could be plaintext inthisfield
and encrypt them using the public encryption function. (Remember that by the very nature
of public-key encryption this function must be available to the adversary.) By comparing
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each of the 232 ciphertexts with the one which is actually encrypted in the transaction, the
adversary can determinethe plaintext. Herethe public-key encryption function is not com-
promised, but rather the way it isused. A closely related attack which applies directly to
authentication for access control purposesis the dictionary attack (see §10.2.2). O

Remark (causes of protocol failure) Protocols and mechanisms may fail for a number of
reasons, including:
1. weaknesses in a particular cryptographic primitive which may be amplified by the
protocol or mechanism;
2. claimed or assumed security guarantees which are overstated or not clearly under-
stood; and
3. the oversight of some principle applicableto a broad class of primitives such as en-
cryption.
Example 1.59 illustrates item 2 if the stream cipher is the one-time pad, and also item 1.
Example 1.60 illustrates item 3. See also §1.8.2.

Remark (protocol design) When designing cryptographic protocols and mechanisms, the
following two steps are essential:
1. identify all assumptionsin the protocol or mechanism design; and

2. for each assumption, determine the effect on the security objectiveif that assumption
isviolated.

Key establishment, management, and
certification

This section gives a brief introduction to methodology for ensuring the secure distribution
of keysfor cryptographic purposes.

Definition Key establishment isany process whereby a shared secret key becomes avail-
able to two or more parties, for subsequent cryptographic use.

Definition Key management is the set of processes and mechanisms which support key
establishment and the maintenance of ongoing keying relationshipsbetween parties, includ-
ing replacing older keys with new keys as necessary.

Key establishment can be broadly subdivided into key agreement and key transport.
Many and various protocol s have been proposed to provide key establishment. Chapter 12
describesanumber of thesein detail. For the purpose of thischapter only abrief overview of
issuesrelated to key management will be given. Simple architectures based on symmetric-
key and public-key cryptography along with the concept of certification will be addressed.

Asnoted in §1.5, amajor issue when using symmetric-key techniquesis the establish-
ment of pairwise secret keys. This becomes more evident when considering a network of
entities, any two of which may wish to communicate. Figure 1.15 illustrates anetwork con-
sisting of 6 entities. The arrowed edgesindicate the 15 possible two-party communications
which could take place. Since each pair of entities wish to communicate, this small net-
work reguires the secure exchange of (g) = 15 key pairs. In anetwork with n entities, the

number of secure key exchanges requiredis () = @
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e I
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Figure 1.15: Keying relationshipsin a simple 6-party network.

The network diagram depicted in Figure 1.15 is simply the amalgamation of 15 two-
party communications as depicted in Figure 1.7. In practice, networks are very large and
the key management problemisacrucial issue. There are anumber of waysto handle this
problem. Two simplistic methods are discussed; one based on symmetric-key and the other
on public-key techniques.

1.11.1 Key management through symmetric-key techniques

One solution which employs symmetric-key techniques involves an entity in the network
whichistrusted by all other entities. Asin §1.8.3, thisentity isreferred to asatrusted third
party (TTP). Eachentity A; sharesadistinct symmetrickey k; withthe TTRP. Thesekeysare
assumed to have been distributed over asecured channel. If two entities subsequently wish
to communicate, the TTP generates akey k (sometimes called a session key) and sends it
encrypted under each of the fixed keys as depicted in Figure 1.16 for entities A; and As.

A1 A2
k]
By ()
As AS
source

Pis ™ TTP

]
A5 A4

Figure 1.16: Key management using a trusted third party (TTP).

Advantages of this approach include:

1. Itiseasy to add and remove entities from the network.
2. Each entity needsto store only one long-term secret key.

Disadvantagesinclude:

1. All communicationsrequireinitial interaction withthe TTP.
2. The TTP must store n long-term secret keys.
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3. The TTP hasthe ahility to read all messages.
4. If the TTPis compromised, all communications are insecure.

1.11.2 Key management through public-key techniques

There are a number of ways to address the key management problem through public-key
techniques. Chapter 13 describes many of these in detail. For the purpose of this chapter a
very simple model is considered.

Each entity in the network has a public/private encryption key pair. The public key
along with the identity of the entity is stored in a central repository called a public file. If
an entity A; wishes to send encrypted messages to entity Ag, A; retrieves the public key
eg Of Ag from the public file, encrypts the message using this key, and sends the ciphertext
to Ag. Figure 1.17 depicts such a network.

Al A2
private key d; private key ds
¢ = Ecq(m)
Public file
c
A1 L er
€6
AG A2 D) AS
private key dg As: es private key ds
m = Dag(c) As: ey
A5 I €5
As €6
A5 A4
private key ds private key d4

Figure 1.17: Key management using public-key techniques.

Advantages of this approach include:

1. No trusted third party is required.
2. The public file could reside with each entity.

3. Only n public keys need to be stored to allow secure communications between any
pair of entities, assuming the only attack is that by a passive adversary.

Thekey management problem becomes more difficult when one must takeinto account
an adversary who is active (i.e. an adversary who can alter the public file containing public
keys). Figure 1.18 illustrates how an active adversary could compromise the key manage-
ment scheme given above. (Thisisdirectly analogousto the attack in §1.8.2.) Inthefigure,
the adversary atersthe public file by replacing the public key eg of entity Ag by the adver-
sary’s public key e*. Any message encrypted for Ag using the public key from the public
file can be decrypted by only the adversary. Having decrypted and read the message, the
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adversary can now encrypt it using the public key of Ag and forward the ciphertext to Ag.
A; however believesthat only Ag can decrypt the ciphertext c.

A Public file
c e”
I RRRREEEEEEEE Eex (M) = € |m-mmmommmmmceeeeee g A1 el
Az: €2
v Az:es
Dy« (c) = m|Eeg(m) = ¢ ¢ Dy, (cl) =m Ay ey
private key | priva’ile key As: es
d* 6
A6 : 6*
Adversary Ag

Figure 1.18: Animpersonation of Ag by an active adversary with public key e*.

To prevent this type of attack, the entities may use a TTP to certify the public key of
each entity. The TTP has a private signing algorithm S7 and a verification algorithm Vi
(see §1.6) assumed to be known by all entities. The TTP carefully verifies the identity of
each entity, and signs a message consisting of an identifier and the entity’s authentic public
key. Thisisasimple example of a certificate, binding the identity of an entity to its public
key (see §1.11.3). Figure 1.19 illustrates the network under these conditions. A; uses the
public key of Ag only if the certificate signature verifies successfully.

Ay
verification Public file

Vir(As|les, s6) Ar. er, Se(Arfler) = 1
c=| Ees(m) €6, S6 Aa, ez, St(Az]le2) = s2
! As, es, Sr(Aalles) = ss
Dag(e) =m Aa, eq, ST(Aslles) = 54
private key As, es5, Sr(As|les) = ss
do As, e6, Sr(As|les) = 56

Ag

Figure 1.19: Authentication of public keys by a TTP. || denotes concatenation.

Advantages of using a TTP to maintain the integrity of the public file include:

1. It prevents an active adversary from impersonation on the network.
2. The TTP cannot monitor communications. Entities need trust the TTP only to bind
identities to public keys properly.
3. Per-communication interaction with the public file can be eliminated if entities store
certificates locally.
Even with a TTPR, some concerns still remain:

1. If thesigning key of the TTPis compromised, all communications become insecure.
2. All trust is placed with one entity.
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1.11.3 Trusted third parties and public-key certificates

A trusted third party has been used in §1.8.3 and again herein §1.11. Thetrust placed on
this entity varies with the way it is used, and hence motivates the following classification.

1.65 Definition A TTPissaid to be unconditionally trusted if it istrusted on all matters. For
example, it may have access to the secret and private keys of users, as well as be charged
with the association of public keysto identifiers.

1.66 Definition A TTPissaid to be functionally trusted if the entity is assumed to be honest
and fair but it does not have accessto the secret or private keys of users.

§1.11.1 provides a scenario which employs an unconditionally trusted TTP. §1.11.2
uses a functionally trusted TTP to maintain the integrity of the public file. A functionally
trusted TTP could be used to register or certify users and contents of documents or, asin
§1.8.3, asajudge.

Public-key certificates

Thedistribution of public keysisgenerally easier than that of symmetrickeys, since secrecy
isnot required. However, theintegrity (authenticity) of publickeysiscritical (recall §1.8.2).

A public-key certificate consists of a data part and asignature part. The data part con-
sistsof the name of an entity, the public key correspondingto that entity, possibly additional
relevant information (e.g., the entity’s street or network address, a validity period for the
public key, and various other attributes). The signature part consists of the signature of a
TTP over the data part.

In order for an entity B to verify the authenticity of the public key of an entity A, B
must have an authentic copy of the public signature verification function of the TTP. For
simplicity, assumethat the authenticity of thisverification functionisprovidedto B by non-
cryptographic means, for example by B obtaining it from the TTP in person. B can then
carry out the following steps:

1. Acquire the public-key certificate of A over some unsecured channel, either from a
central database of certificates, from A directly, or otherwise.

2. Usethe TTP' s verification function to verify the TTP's signature on A’s certificate.

3. If this signature verifies correctly, accept the public key in the certificate as A’s au-
thentic public key; otherwise, assume the public key isinvalid.

Before creating a public-key certificatefor A, the TTP must take appropriate measures
to verify theidentity of A and the fact that the public key to be certificated actually belongs
to A. One method isto requirethat A appear before the TTP with a conventional passport
as proof of identity, and obtain A’s public key from A in person along with evidence that
A knows the corresponding private key. Once the TTP creates a certificate for a party, the
trust that al other entities have in the authenticity of the TTP's public key can be used tran-
sitively to gain trust in the authenticity of that party’s public key, through acquisition and
verification of the certificate.

1.12 Pseudorandom numbers and sequences

Random number generation is an important primitive in many cryptographic mechanisms.
For example, keysfor encryption transformations need to be generated in amanner whichis
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unpredictableto an adversary. Generating arandom key typically involves the selection of
random numbersor bit sequences. Random number generation presents challenging issues.
A brief introduction is given here with detailsleft to Chapter 5.

Often in cryptographic applications, one of the following steps must be performed:

(i) Fromafiniteset of n elements(e.g., {1,2,...,n}), select an element at random.
(if) From the set of all sequences (strings) of length m over some finite alphabet A of n
symbols, select a sequence at random.
(iii) Generate arandom sequence (string) of symbolsof length m over aset of n symbols.

It is not clear what exactly it means to select at random or generate at random. Calling a
number random without a context makes little sense. |sthe number 23 a random number?
No, but if 49 identical balls labeled with a number from 1 to 49 arein a container, and this
container mixes the balls uniformly, drops one ball out, and this ball happensto be labeled
with the number 23, then one would say that 23 was generated randomly from a uniform
distribution. The probability that 23 dropsoutis1in 49 or %.

If the number on the ball which was dropped from the container isrecorded and the ball
is placed back in the container and the process repeated 6 times, then a random sequence
of length 6 defined on the alphabet A = {1,2,...,49} will have been generated. What is
the chancethat the sequence 17, 45, 1, 7, 23, 35 occurs? Since each element in the sequence
has probability 4—19 of occuring, the probability of the sequence17, 45, 1, 7, 23, 35 occurring
is

1 1 1 1 1 1 1

— X=X —=X—=X—=X—=——.

49 49 49 49 49 49 13841287201
There are precisely 13841287201 sequences of length 6 over the aphabet A. If each of
these sequencesiswritten on one of 13841287201 ballsand they are placed in the container
(first removing the original 49 balls) then the chance that the sequence given above drops
out is the same as if it were generated one ball at atime. Hence, (ii) and (iii) above are
essentially the same statements.

Finding good methods to generate random sequencesiis difficult.

Example (random sequence generator) To generate arandom sequence of 0’sand 1's, a
coin could be tossed with a head landing up recorded asa 1 and atail asa0. It is assumed
that the coinis unbiased, which meansthat the probability of a1 onagiventossisexactly % .
Thiswill depend on how well the coin is made and how the tossis performed. This method
would be of little value in a system where random sequences must be generated quickly
and often. It has no practical value other than to serve as an example of the idea of random
number generation. O

Example (random seguence generator) A noise diode may be used to produce random
binary sequences. Thisis reasonable if one has some way to be convinced that the proba-
bility that a1 will be produced on any giventrial is % Should this assumption befalse, the
seguence generated would not have been selected from a uniform distribution and so not
all sequences of a given length would be equally likely. The only way to get some feeling
for the reliability of thistype of random sourceisto carry out statistical tests on its output.
These are considered in Chapter 5. If the diode is a source of a uniform distribution on the
set of al binary sequences of agiven length, it provides an effective way to generate ran-
dom sequences. O

Since most true sources of random sequences (if thereis such athing) come from phys-
ical means, they tend to be either costly or slow in their generation. To overcome these
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problems, methods have been devised to construct pseudorandom sequencesin adetermin-
istic manner from a shorter random sequence called a seed. The pseudorandom sequences
appear to be generated by atruly random source to anyone not knowing the method of gen-
eration. Often the generation algorithm is known to all, but the seed is unknown except by
the entity generating the sequence. A plethoraof algorithms has been devel oped to generate
pseudorandom bit sequences of varioustypes. Many of these are compl etely unsuitable for
cryptographic purposes and one must be cautious of claims by creators of such algorithms
as to the random nature of the outpuit.

1.13 Classes of attacks and security models

Over the years, many different types of attacks on cryptographic primitives and protocols
have been identified. The discussion here limits consideration to attacks on encryption and
protocols. Attacks on other cryptographic primitiveswill be given in appropriate chapters.

In§1.11therolesof an activeand apassiveadversary werediscussed. Theattacksthese
adversaries can mount may be classified as follows..

1. A passive attack is one where the adversary only monitors the communication chan-
nel. A passive attacker only threatens confidentiality of data.

2. An active attack is one where the adversary attemptsto delete, add, or in some other
way alter the transmission on the channel. An active attacker threatens dataintegrity
and authentication as well as confidentiality.

A passive attack can be further subdivided into more specialized attacks for deducing
plaintext from ciphertext, as outlined in §1.13.1.

1.13.1 Attacks on encryption schemes

Theobjective of thefollowing attacksisto systematically recover plaintext from ciphertext,
or even more drastically, to deduce the decryption key.

1. A ciphertext-only attack is one where the adversary (or cryptanalyst) triesto deduce
the decryptionkey or plaintext by only observing ciphertext. Any encryption scheme
vulnerable to thistype of attack is considered to be completely insecure.

2. A known-plaintext attack is one where the adversary has a quantity of plaintext and
corresponding ciphertext. This type of attack istypically only marginally more dif-
ficult to mount.

3. A chosen-plaintext attack is one where the adversary chooses plaintext and is then
given corresponding ciphertext. Subsequently, the adversary uses any information
deduced in order to recover plaintext corresponding to previously unseen ciphertext.

4. An adaptive chosen-plaintext attack is a chosen-plaintext attack wherein the choice
of plaintext may depend on the ciphertext received from previous requests.

5. A chosen-ciphertext attack is one where the adversary selects the ciphertext and is
then given the corresponding plaintext. One way to mount such an attack is for the
adversary to gain accessto the equipment used for decryption (but not the decryption
key, which may be securely embedded in the equipment). The objective is then to
be able, without access to such equipment, to deduce the plaintext from (different)
ciphertext.
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6. An adaptive chosen-ciphertext attack is a chosen-ciphertext attack where the choice
of ciphertext may depend on the plaintext received from previous requests.

Most of these attacks also apply to digital signature schemes and message authentication
codes. Inthiscase, the objective of the attacker isto forge messagesor MACs, as discussed
in Chapters 11 and 9, respectively.

1.13.2 Attacks on protocols

Thefollowingisapartial list of attackswhich might be mounted on variousprotocols. Until
aprotocol is proven to provide the service intended, the list of possible attacks can never
be said to be complete.

1. known-key attack. In thisattack an adversary obtains some keys used previously and
then uses this information to determine new keys.

2. replay. Inthisattack an adversary records a communication session and replays the
entire session, or a portion thereof, at some later point in time.

3. impersonation. Here an adversary assumes the identity of one of the legitimate par-
tiesin anetwork.

4. dictionary. Thisis usually an attack against passwords. Typicaly, a password is
stored in a computer file as the image of an unkeyed hash function. When a user
logs on and enters a password, it is hashed and the image is compared to the stored
value. Anadversary cantakealist of probable passwords, hash all entriesin thislist,
and then comparethisto thelist of true encrypted passwordswith the hope of finding
matches.

5. forward search. This attack is similar in spirit to the dictionary attack and is used to
decrypt messages. An example of this method was cited in Example 1.60.

6. interleaving attack. Thistype of attack usually involves someform of impersonation
in an authentication protocol (see §12.9.1).

1.13.3 Models for evaluating security

The security of cryptographic primitives and protocols can be evaluated under several dif-
ferent models. The most practical security metrics are computational, provable, and ad hoc
methodology, although the latter is often dangerous. The confidence level in the amount
of security provided by a primitive or protocol based on computational or ad hoc security
increases with time and investigation of the scheme. However, time is not enough if few
people have given the method careful analysis.

(i) Unconditional security

The most stringent measure is an information-theoretic measure — whether or not a sys-
tem has unconditional security. An adversary is assumed to have unlimited computational
resources, and the question is whether or not there is enough information available to de-
feat the system. Unconditional security for encryption systems is called perfect secrecy.
For perfect secrecy, the uncertainty in the plaintext, after observing the ciphertext, must be
equal tothe apriori uncertainty about the plaintext — observation of the ciphertext provides
no information whatsoever to an adversary.

A necessary condition for a symmetric-key encryption scheme to be unconditionally
secureisthat the key be at least aslong asthe message. The one-time pad (§1.5.4) isan ex-
ample of an unconditionally secure encryption algorithm. In general, encryption schemes
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do not offer perfect secrecy, and each ciphertext character observed decreases the theoreti-
cal uncertainty in the plaintext and the encryption key. Public-key encryption schemes can-
not be unconditionally secure since, given a ciphertext ¢, the plaintext can in principle be
recovered by encrypting all possible plaintexts until ¢ is obtained.

(i) Complexity-theoretic security

An appropriate model of computation is defined and adversaries are modeled as having
polynomial computational power. (They mount attacks involving time and space polyno-
mial in the size of appropriate security parameters.) A proof of security relativeto the model
isthen constructed. An objectiveisto design acryptographic method based on the weakest
assumptions possible anticipating a powerful adversary. Asymptotic analysis and usually
also worst-case analysis is used and so care must be exercised to determine when proofs
have practical significance. In contrast, polynomial attacks which are feasible under the
model might, in practice, still be computationally infeasible.

Security analysis of thistype, although not of practical valuein all cases, may nonethe-
less pave the way to a better overall understanding of security. Complexity-theoretic anal-
ysisisinvaluable for formulating fundamental principles and confirming intuition. Thisis
like many other sciences, whose practical techniques are discovered early in the develop-
ment, well before atheoretical basis and understanding is attained.

(iii) Provable security

A cryptographic method is said to be provably secure if the difficulty of defeating it can be
shown to be essentially as difficult as solving a well-known and supposedly difficult (typ-
ically number-theoretic) problem, such as integer factorization or the computation of dis-
crete logarithms. Thus, “provable” here means provable subject to assumptions.

This approach is considered by some to be as good a practical analysis technique as
exists. Provable security may be considered part of aspecial sub-class of thelarger class of
computational security considered next.

(iv) Computational security

This measures the amount of computational effort required, by the best currently-known
methods, to defeat a system; it must be assumed here that the system has been well-studied
to determine which attacks are relevant. A proposed technique is said to be computation-
ally secureif the perceived level of computation required to defeat it (using the best attack
known) exceeds, by acomfortable margin, the computational resources of the hypothesized
adversary.

Often methods in this class are related to hard problems but, unlike for provable secu-
rity, no proof of equivalenceisknown. Most of the best known public-key and symmetric-
key schemesin current use arein this class. This classis sometimes also called practical
security.

(v) Ad hoc security

Thisapproach consists of any variety of convincing argumentsthat every successful attack
requiresaresourcelevel (e.g., timeand space) greater than thefixed resourcesof aperceived
adversary. Cryptographic primitives and protocols which survive such analysis are said to
have heuristic security, with security here typically in the computational sense.

Primitives and protocolsare usually designed to counter standard attacks such asthose
givenin §1.13. While perhapsthe most commonly used approach (especially for protocols),
itis, in some ways, the least satisfying. Claims of security generally remain questionable
and unforeseen attacks remain a threat.
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1.13.4 Perspective for computational security

To evaluate the security of cryptographic schemes, certain quantities are often considered.

1.69 Definition Theworkfactor W, isthe minimum amount of work (measured in appropriate
units such as elementary operations or clock cycles) required to compute the private key d
given the public key e, or, in the case of symmetric-key schemes, to determine the secret
key k. Morespecifically, one may consider thework required under aciphertext-only attack
given n ciphertexts, denoted W, (n).

If W, ist years, thenfor sufficiently larget the cryptographic schemeis, for al practical
purposes, a secure system. To date no public-key system has been found where one can
prove a sufficiently large lower bound on the work factor W,. The best that is possible to
dateisto rely on the following as abasis for security.

1.70 Definition The historical work factor Wy is the minimum amount of work required to
computethe private key d from the public key e using the best known algorithms at a given
point in time.

The historical work factor W, varieswith time as algorithms and technol ogy improve.
It correspondsto computational security, whereas W, correspondsto thetrue security level,
although this typically cannot be determined.

How large is large?

§1.4 described how the designer of an encryption system triesto create a scheme for which
the best approach to breaking it is through exhaustive search of the key space. The key
space must then be large enough to make an exhaustive search completely infeasible. An
important question then is“How largeislarge?’. In order to gain some perspective on the
magnitude of numbers, Table 1.2 lists various items along with an associated magnitude.

Reference Magnitude
Secondsin ayear ~ 3 x 107
Age of our solar system (years) ~ 6 x 10°
Seconds since creation of solar system ~ 2 x 1017
Clock cycles per year, 50 MHz computer ~ 1.6 x 101°
Binary strings of length 64 264 ~ 1.8 x 1019
Binary strings of length 128 2128 ~ 3.4 x 1038
Binary strings of length 256 2256 ~ 1.2 x 1077
Number of 75-digit prime numbers ~ 5.2 x 1072
Electronsin the universe ~ 8.37 x 1077

Table 1.2: Reference numbers comparing relative magnitudes.

Some powers of 10 arereferred to by prefixes. For example, high-speed modern com-
puters are now being rated in terms of teraflops where ateraflop is 1012 floating point op-
erations per second. Table 1.3 providesalist of commonly used prefixes.
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‘ Prefix ‘ i Magnitude ‘ ‘ Prefix ‘ Symbol | Magnitude
exa E 1018 deci d 1071
peta P 101° centi c 1072
tera T 1012 milli m 1073
giga G 10° micro U 106
mega M 106 nano n 1079
kilo k 103 pico p 10712
hecto h 102 femto f 10-1°
deca da 10 atto a 1018

Table 1.3: Prefixes used for various powers of 10.

1.14 Notes and further references

§1.1

§1.2

Kahn [648] gives a thorough, comprehensive, and non-technical history of cryptography,
published in 1967. Feistel [387] provides an early exposition of block cipher ideas. The
original specification of DES is the 1977 U.S. Federal Information Processing Standards
Publication 46 [396]. Public-key cryptography was introduced by Diffie and Hellman
[345]. Thefirst concrete realization of a public-key encryption scheme was the knapsack
scheme by Merkle and Hellman [857]. The RSA public-key encryption and signature sch-
emeisdueto Rivest, Shamir, and Adleman [1060], while the EIGamal public-key encryp-
tion and signature schemes are due to EIGamal [368]. The two digital signature standards,
I SO/IEC 9796 [596] and the Digital Signature Standard [406], are discussed extensively in
Chapter 11.

Cryptography has used specialized areas of mathematics such as number theory to realize
very practical mechanismssuch as public-key encryption and digital signatures. Such usage
was not conceived as possible amere twenty years ago. The famous mathematician, Hardy
[539], went as far asto boast about its lack of utility:

“ ... both Gauss and lesser mathematicians may be justified in rgjoicing that
thereisone science at any rate, and that their own, whose very remoteness from
ordinary human activities should keep it gentle and clean.”

This section was inspired by the foreword to the book Contemporary Cryptology, The Sci-
ence of Information Integrity, edited by Simmons [1143]. The handwritten signature came
into the British legal system in the seventeenth century as ameansto provide various func-
tions associated with information security. See Chapter 9 of Meyer and Matyas [859] for
details.

Thisbook only considers cryptography asit appliesto information in digital form. Chapter
9 of Beker and Piper [84] provides an introduction to the encryption of analogue signals,
in particular, speech. Although in many cases physical means are employed to facilitate
privacy, cryptography plays the major role. Physical means of providing privacy include
fiber optic communication links, spread spectrum technology, TEMPEST techniques, and
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§1.3
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§1.5

tamper-resistant hardware. Steganography is that branch of information privacy which at-
tempts to obscure the existence of data through such devices asinvisible inks, secret com-
partments, the use of subliminal channels, and the like. Kahn [648] provides an historical
account of various steganographic techniques.

Excellent introductionsto cryptography can be found in the articles by Diffie and Hellman
[347], Massey [786], and Rivest [1054]. A concise and elegant way to describe cryptogra-
phy was given by Rivest [1054]: Cryptography is about communication in the presence of
adversaries. The taxonomy of cryptographic primitives (Figure 1.1) was derived from the
classification given by Bosselaers, Govaerts, and Vandewalle [175].

The theory of functions is fundamental in modern mathematics. The term range is often
used in place of image of afunction. The latter, being more descriptive, is preferred. An
alternate term for one-to-one isinjective; an aternate term for onto is surjective.

One-way functionswereintroduced by Diffieand Hellman [345]. A moreextensive history
isgiven on page 377. Trapdoor one-way functionswerefirst postulated by Diffie and Hell-
man [345] and independently by Merkle [850] as a meansto obtain public-key encryption
schemes; several candidates are given in Chapter 8.

The basic concepts of cryptography are treated quite differently by various authors, some
being more technical than others. Brassard [192] providesa concise, lucid, and technically
accurate account. Schneier [1094] gives a less technical but very accessible introduction.
Salomaa[1089], Stinson [1178], and Rivest [ 1054] present more mathematical approaches.
Davies and Price [308] provide a very readable presentation suitable for the practitioner.

The comparison of an encryption scheme to a resettable combination lock is from Diffie
and Hellman [347]. Kerckhoffs' desiderata [668] were originally stated in French. The
trandation stated here is given in Kahn [648]. Shannon [1121] also gives desiderata for
encryption schemes.

Symmetric-key encryption has a very long history, as recorded by Kahn [648]. Most sys-
tems invented prior to the 1970s are now of historical interest only. Chapter 2 of Denning
[326] is aso agood source for many of the more well known schemes such as the Caesar
cipher, Vigenére and Beaufort ciphers, rotor machines (Enigmaand Hagelin), running key
ciphers, and so on; see also Davies and Price [308] and Konheim [705]. Beker and Piper
[84] give an indepth treatment, including cryptanalysis of several of the classical systems
used in World War I1. Shannon’s paper [1121] is considered the seminal work on secure
communications. It is also an excellent source for descriptions of various well-known his-
torical symmetric-key ciphers.

Simple substitution and transposition ciphers are the focus of §1.5. Hill ciphers [557], a
class of substitution ciphers which substitute blocks using matrix methods, are covered in
Example 7.52. Theideaof confusion and diffusion (Remark 1.36) wasintroduced by Shan-
non [1121].

Kahn [648] gives 1917 as the date when Vernam discovered the cipher which bears Ver-
nam'’s name, however, Vernam did not publish the result until 1926 [1222]; see page 274
for further discussion. Massey [786] states that reliable sources have suggested that the
M oscow-Washington hot-line (channel for very high level communications) is no longer
secured with a one-time pad, which has been replaced by a symmetric-key cipher requiring
amuch shorter key. This change would indicate that confidence and understanding in the
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§1.8

§1.9

§1.10

ability to construct very strong symmetric-key encryption schemes exists. The one-time
pad seems to have been used extensively by Russian agents operating in foreign countries.
The highest ranking Russian agent ever captured in the United States was Rudolph Abel.
When apprehended in 1957 he had in his possession a booklet the size of a postage stamp
(11 x I x L inches) containing a one-time key; see Kahn [648, p.664].

The concept of adigital signaturewasintroduced by Diffieand Hellman [345] and indepen-
dently by Merkle[850]. Thefirst practical realization of adigital signature schemeappeared
in the paper by Rivest, Shamir, and Adleman [1060]. Rabin [1022] (see also [1023]) aso
claimsto have independently discovered RSA but did not publish the result.

Most introductory sources for digital signatures stress digital signatures with message re-
covery coming from a public-key encryption system. Mitchell, Piper, and Wild [882] give
agood general treatment of the subject. Stinson [1178] provides a similar elementary but
general introduction. Chapter 11 generalizesthe definition of adigital signatureby allowing
randomization. The scheme described in §1.8 is referred to as deterministic. Many other
types of digital signatures with specific properties have been created, such as blind signa
tures, undeniable signatures, and fail stop signatures (see Chapter 11).

Much effort has been devoted to devel oping a theory of authentication. At the forefront of
thisis Simmons[1144], whose contributions are nicely summarized by Massey [786]. For
amore concrete example of the necessity for authentication without secrecy, seethe article
by Simmons [1146].

1976 marked a major turning point in the history of cryptography. In several papers that
year, Diffie and Hellman introduced the idea of public-key cryptography and gave concrete
examples of how such a scheme might be realized. The first paper on public-key cryptog-
raphy was “Multiuser cryptographic techniques’ by Diffie and Hellman [344], presented
at the National Computer Conference in June of 1976. Although the authors were not sat-
isfied with the examples they cited, the concept was made clear. In their landmark paper,
Diffie and Hellman [345] provided a more comprehensive account of public-key cryptog-
raphy and described the first viable method to realize this elegant concept. Another good
sourcefor the early history and development of the subject is Diffie [343]. Nechvatal [922]
also provides a broad survey of public-key cryptography.

Merkle[849, 850] independently discovered public-key cryptography, illustrating how this
concept could be realized by giving an elegant and ingenious example now commonly re-
ferred to as the Merkle puzzle scheme. Simmons [1144, p.412] notes the first reported ap-
plication of public-key cryptography wasfielded by SandiaNational Laboratories(U.S.) in
1978.

Much of the early work on cryptographic hash functions was done by Merkle [850]. The
most comprehensive current treatment of the subject is by Preneel [1004].

A large number of successful cryptanalytic attacks on systems claiming security are dueto
protocol failure. Anoverview of thisareaisgiven by Moore[899], including classifications
of protocol failures and design principles.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.



48

Ch. 1 Overview of Cryptography

§1.11

§1.12

§1.13

One approach to distributing public-keys is the so-called Merkle channel (see Simmons
[1144, p.387]). Merkle proposed that public keys be distributed over so many independent
public channels (newspaper, radio, television, etc.) that it would be improbable for an ad-
versary to compromise all of them.

In 1979 Kohnfelder [702] suggested the idea of using public-key certificates to facilitate
the distribution of public keys over unsecured channels, such that their authenticity can be
verified. Essentially the sameidea, but by on-line requests, was proposed by Needham and
Schroeder (ses Wilkes [1244]).

A provably securekey agreement protocol hasbeen proposed whose security isbased onthe
Heisenberg uncertainty principle of quantum physics. The security of so-called quantum
cryptography does not rely upon any compl exity-theoretic assumptions. For further details
on quantum cryptography, consult Chapter 6 of Brassard [192], and Bennett, Brassard, and
Ekert [115].

For anintroduction and detailed treatment of many pseudorandom sequence generators, see
Knuth [692]. Knuth cites an example of a complex scheme to generate random numbers
which on closer analysisis shown to produce numberswhich arefar from random, and con-
cludes: ...random numbers should not be generated with a method chosen at random.

The seminal work of Shannon [1121] on secure communications, published in 1949, re-
mains as one of the best introductionsto both practice and theory, clearly presenting many
of thefundamental ideasincluding redundancy, entropy, and unicity distance. Various mod-
els under which security may be examined are considered by Rueppel [1081], Simmons
[1144], and Preneel [1003], among others; see also Goldwasser [476].
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This chapter is a collection of basic material on probability theory, information the-
ory, complexity theory, number theory, abstract algebra, and finite fields that will be used
throughout this book. Further background and proofs of the facts presented here can be
foundinthereferencesgivenin §2.7. Thefollowing standard notation will be used through-

out:

Nogak~owdPE

10.
11
12.
13.
14.
15.
16.

Z denotesthe set of integers; that is, theset {... , —2,-1,0,1,2,...}.

Q denotes the set of rational numbers; that is, theset { | a,b € Z,b # 0}.

R denotesthe set of real numbers.

7 is the mathematical constant; 7 ~ 3.14159.

e isthe base of the natural logarithm; e ~ 2.71828.

[a, b] denotesthe integers x satisfyinga < x < b.

|z] isthe largest integer less than or equal to z. For example, |5.2] = 5 and
|—5.2] = —6.

[z] isthe smallest integer greater than or equal to z. For example, [5.2] = 6 and
[—5.2] = —5.

If Aisafiniteset, then|A| denotesthenumber of elementsin A, called the cardinality
of A.

a € A meansthat element a isamember of the set A.

A C B meansthat A isasubset of B.

A C B meansthat A isaproper subset of B; thatisA C B and A # B.
Theintersection of sets A and Bisthesst AN B ={z |z € Aandz € B}.
Theunionof sets A and B isthesst AUB ={z |z € Aorz € B}.

The difference of sets A and Bistheset A— B={z |z € Aandz ¢ B}.

The Cartesian product of sets A and B istheset A x B = {(a,b) |a € Aandb €
B} For example, {al,ag} X {b1,b2,b3} = {(al, bl), (a1, bQ), (al, bg), (a27b1),
(ag, bQ), (ag, bg)}
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17. A function or mapping f : A — B isarulewhich assignsto each element a in A
precisely oneelement b in B. If a € Aismappedtob € B thenbiscaled theimage
of a, a iscaled apreimage of b, and thisiswritten f(a) = b. Theset Aiscaledthe
domain of f, and the set B is called the codomain of f.

18. A function f : A — Bis1— 1 (one-to-one) or injectiveif each elementin B isthe
image of a most one element in A. Hence f(a1) = f(az) impliesa; = as.

19. A function f : A — B isonto or surjectiveif each b € B istheimage of at least
onea € A.

20. A function f : A — B isabijectionif it is both one-to-one and onto. If fisa
bijection between finite sets A and B, then |A| = | B|. If f isabijection between a
set A and itself, then f is called a permutation on A.

21. Inz isthe natural logarithm of z; that is, the logarithm of x to the base e.

22. 1g x isthelogarithm of z to the base 2.

23. exp(z) isthe exponentia function e”.

24. Y7 | a; denotesthesum ay + as + - - - + ay,.

25. T]7, a; denotesthe product a; - as - - - - - .-

26. For apositive integer n, the factorial functionisn! = n(n — 1)(n — 2)---1. By
convention, 0! = 1.

2.1 Probability theory

2.1.1 Basic definitions

2.1

2.2

2.3

2.4

2.5

Definition An experiment is a procedure that yields one of a given set of outcomes. The
individual possible outcomes are called simple events. The set of al possible outcomesis
called the sample space.

This chapter only considers discrete sample spaces; that is, sample spaces with only
finitely many possible outcomes. Let the simple events of a sample space S be labeled
8158244+ y8n.

Definition A probability distribution P on S isasequence of numbersp1, ps, - . . , p,, that
areall non-negativeand sumto 1. Thenumber p; isinterpreted asthe probability of s; being
the outcome of the experiment.

Definition Anevent E is asubset of the sample space S. The probability that event £
occurs, denoted P(E), isthe sum of the probabilitiesp; of all ssimpleeventss; which belong
toE. If s, € S, P({s;}) issimply denoted by P(s;).

Definition If E isan event, the complementary event is the set of simple events not be-
longing to E, denoted E.

Fact Let E C S bean event.
(i) 0 < P(E) < 1. Furthermore, P(S) = 1 and P() = 0. (0 is the empty set.)
(i) P(E)=1-P(E).
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(iii) If the outcomesin S are equally likely, then P(E) = %
2.6 Definition Two events E; and E, are called mutually exclusiveif P(E; N Ey) = 0. That

is, the occurrence of one of the two events excludes the possibility that the other occurs.

2.7 Fact Let E; and E, betwo events.
(i) P(E1UE2) + P(Ey N Ey) = P(Ey) + P(E>). Hence, if E; and E; are mutually
exclusive, then P(E1 U Es) = P(E1) + P(E»).

2.1.2 Conditional probability

2.8 Definition Let E; and E, be two eventswith P(E,) > 0. The conditional probability of
E; given E,, denoted P(E4 |E»), is

P(E1 N E»)
P(Ey)

P(E,|E>) measuresthe probability of event E; occurring, giventhat E» has occurred.

P(E1|Es) =

2.9 Definition Events E; and E, are said to beindependent if P(E; N Ey) = P(E,)P(Es).

Observethatif E4 and E, areindependent, then P(E4 |E;) = P(E;) and P(Ex|Ey) =
P(E,). Thatis, the occurrence of one event doesnot influence the likelihood of occurrence
of the other.

2.10 Fact (Bayes theorem) If E; and E, are eventswith P(E>) > 0, then
P(Ey)P(Es|Er)

P(E1|E2) = P(EQ)

2.1.3 Random variables
Let S be a sample space with probability distribution P.

2.11 Definition A randomvariable X isafunction from the sample space S to the set of real
numbers; to each simple event s; € S, X assignsarea number X (s;).

Since S isassumed to befinite, X can only take on afinite number of values.

2.12 Definition Let X bearandomvariableon S. Theexpected valueor meanof X isE(X) =
2sics X (si)P(si).

2.13 Fact Let X bearandomvariableon S. Then E(X) =3 pz- P(X =x).

2.14 Fact If X1, Xo,...,X,, aerandomvariableson S,and a1, as, ... , a,, arerea numbers,
then E(Z;nil aiX,-) = ZZL aiE(Xi).

2.15 Definition The variance of arandom variable X of mean p isanon-negative number de-
fined by
Var(X) = E((X — p)?).

The standard deviation of X isthe non-negative square root of Var(X).
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2.16

If arandom variable has small variance then large deviations from the mean are un-
likely to be observed. This statement is made more precise below.

Fact (Chebyshev'sinequality) Let X be a random variable with mean , = E(X) and
variance 02 = Var(X). Thenfor any t > 0,

0.2

P(|X*H|2t)§t—-

2.1.4 Binomial distribution

2.17

2.18

2.19

2.20

2.21

2.22

2.23

2.24

Definition Letn and k be non-negativeintegers. The binomial coefficient (2) isthe num-
ber of different ways of choosing & distinct objects from a set of n distinct objects, where
the order of choiceis not important.

Fact (propertiesof binomial coefficients) Let » and & be non-negative integers.
(i) (2) = 4!(7?1@!-
i) (o) = (2%
i) (i11) = () + (-
Fact (binomial theorem) For any real numbersa, b, and non-negativeinteger n, (a+b)" =
o (R)atom .

Definition A Bernoulli trial is an experiment with exactly two possible outcomes, called
success and failure.

o~

s

Fact Suppose that the probability of success on a particular Bernoulli trial isp. Then the
probability of exactly k successesin a sequence of n such independent trialsis

(:)pk(l —p)"*, foreach0 < k < n. 2.1)

Definition The probability distribution (2.1) is called the binomial distribution.

Fact The expected number of successes in a sequence of n independent Bernoulli trials,
with probability p of successin each trial, isnp. The variance of the number of successes

isnp(l — p).

Fact (law of large numbers) Let X be the random variable dencting the fraction of suc-
cesses in n independent Bernoulli trias, with probability p of successin each trial. Then
forany e > 0,

P(|X —p| >¢€) — 0, asn — 0.

In other words, asn gets larger, the proportion of successes should be close to p, the
probability of successin each trial.
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2.1.5 Birthday problems

2.25 Definition
(i) For positive integers m, n withm > n, the number m(™ is defined as follows:

m™ =m(m—1)(m—2)---(m —n+1).
(i) Let m,n be non-negative integers with m > n. The Sirling number of the second

kind, denoted {"}, is
)28 ()

k=0
with the exception that {)} = 1.

The symbol {f}} counts the number of ways of partitioning a set of m objectsinto n
non-empty subsets.

2.26 Fact (classical occupancy problem) An urn hasm ballsnumbered 1 to m. Supposethat n
balls are drawn from the urn one at atime, with replacement, and their numbers are listed.
The probability that exactly ¢ different balls have been drawn is

)
Pl(m,n,t):{TtL}mn, ]_StSTL
m

The birthday problemis a special case of the classical occupancy problem.

2.27 Fact (birthday problem) An urn hasm balls numbered 1 to m. Suppose that »n balls are
drawn from the urn one at atime, with replacement, and their numbers are listed.

(i) The probability of at least one coincidence (i.e., aball drawn at least twice) is

"o

Py(m,n)=1— Py(m,n,n) =1— 1<n<m. (2.2

mn’
If n = 0O( ‘m) (see Definition 2.55) and m — oo, then

_ 2
Py(m,n) — 1 —exp (%+O(,—l_>> ~1—exp (;—m>
m

(if) Asm — oo, the expected number of draws before acoincidenceis /5.

Thefollowing explains why probability distribution (2.2) isreferred to asthe birthday
surprise or birthday paradox. The probability that at least 2 people in aroom of 23 people
have the same birthday is P»(365, 23) &~ 0.507, which is surprisingly large. The quantity
P,(365,n) alsoincreasesrapidly as n increases; for example, P2 (365, 30) =~ 0.706.

A different kind of problemis consideredin Facts2.28, 2.29, and 2.30 below. Suppose
that there are two urns, one containing m white balls numbered 1 to m, and the other con-
taining m red ballsnumbered 1 to m. First, n; ballsare selected from thefirst urn and their
numbers listed. Then ny balls are selected from the second urn and their numbers listed.
Finally, the number of coincidences between the two listsis counted.

2.28 Fact (model A) If the balls from both urns are drawn one at atime, with replacement, then
the probability of at least one coincidenceis

1 na fn
4 (t1+t2) J T 2
PB(m)nlanQ)il m'n,1+7’7,2 Zm e {tl}{tg}’

t1,t2
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wherethe summationisoveral 0 < ¢ <n1,0 <ty < na2. Ifn=n1 =n2,n=0( 'm)
and m — oo, then

2 1 2
P3(m,ny1,n3) — 1 — exp <_n_ [1 +0 (—/_>}) ~1—exp <_n_> .
m m m

2.29 Fact (model B) If the balls from both urns are drawn without replacement, then the prob-
ability of at least one coincidenceis

m(nﬁ-nz)
Py(m,ni,ng) =1— —
If ny = O( 'm), na = O( 'm),and m — oo, then

—1 1
Py(m,ni,n2) — 1 —exp <_n1n2 {1—1—”14—”2 —|—O<—>]>.
m 2m m

2.30 Fact (model C) If then, whiteballsare drawn one at atime, with replacement, and the ns
red balls are drawn without replacement, then the probability of at least one coincidenceis

1 (12 \™
P5(m,n1,n2) =1 (1 m) .
If ny = O( 'm), ny = O( 'm),and m — oo, then

1
Ps(m,ny,n2) — 1 —exp (—n1n2 [1 +0 (—,_>]> ~1—exp (_nmz) _
m m

m

2.1.6 Random mappings

2.31 Definition Let F,, denotethe collection of al functions (mappings) from afinite domain
of size n to afinite codomain of sizen.

Models where random elements of F,, are considered are called random mappings
models. Inthissectionthe only random mappingsmodel considered iswhereevery function
from F,, isequally likely to be chosen; such models arise frequently in cryptography and
algorithmic number theory. Note that | F,,| = n"™, whence the probability that a particular
function from F,, ischosenis 1/n™.

2.32 Definition Let f beafunctionin F,, with domain and codomain equal to {1,2,... ,n}.
The functional graph of f is adirected graph whose points (or vertices) are the elements
{1,2,...,n} and whose edges are the ordered pairs (z, f(x)) foral z € {1,2,... ,n}.

2.33 Example (functional graph) Consider thefunction f : {1,2,...,13} — {1,2,...,13}
defined by f(1) = 4, f(2) = 11, f(3) = 1, f(4) = 6, £(5) = 3, f(6) = 9, f(7) = 3,
f(8) =11, f(9) = 1, f(10) = 2, f(11) = 10, f(12) = 4, f(13) = 7. The functiona
graph of f isshownin Figure2.1. 0

As Figure 2.1 illustrates, a functional graph may have several components (maximal
connected subgraphs), each component consisting of a directed cycle and some directed
trees attached to the cycle.

2.34 Fact Asn tendsto infinity, the following statements regarding the functional digraph of a
random function f from F,, aretrue:

(i) The expected number of componentsis % Inn.
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2.35

2.36

2.37

2.38

13
\ 12 4 10
o—» 6 8

Figure 2.1: Afunctional graph (see Example 2.33).

(i) The expected number of points which are on the cyclesis y/mn /2.
(iii) The expected number of terminal points (points which have no preimages) isn/e.
(iv) The expected number of k-th iterate image points (x is a k-th iterate image point if
x=f(f(--- f(y)---)) for somey) is (1 — 7)n, where the 7, satisfy the recurrence
——

k times
10 =0, k1 = e~ 7% for k > 0.

Definition Let f bearandom function from {1,2,...,n} t0{1,2,... ,n} andletu €
{1,2,...,n}. Consider the sequence of points ug, u, us, ... defined by ug = u, u; =
f(u;—q) fori > 1. Intermsof the functional graph of £, this sequence describesa path that
connectsto acycle.

(i) The number of edgesin the path is called the tail length of u, denoted A(u).
(i) The number of edgesin the cycleis called the cycle length of u, denoted (w).
(iii) Therho-length of u isthe quantity p(u) = A(u) + p(u).
(iv) Thetreesizeof u isthe number of edgesin the maximal tree rooted on acycleinthe
component that contains u.
(v) The component size of u isthe number of edges in the component that contains w.
(vi) The predecessorssize of u isthe number of iterated preimages of u.

Example Thefunctiona graphin Figure2.1 has2 componentsand 4 terminal points. The
point w = 3 has parameters A(u) = 1, u(u) = 4, p(u) = 5. The tree, component, and
predecessorssizes of u = 3 are 4, 9, and 3, respectively. O

Fact Asn tendsto infinity, the following are the expectations of some parameters associ-
ated with arandom point in {1,2, ... ,n} and arandom function from F,,: (i) tail length:
v/mn/8 (ii) cyclelength: \/mn/8 (iii) rho-length: /7n/2 (iv) tree size: n/3 (v) compo-
nent size: 2n/3 (vi) predecessorssize: /mn/8.

Fact Asn tendstoinfinity, the expectations of the maximum tail, cycle, and rho lengthsin
arandomfunctionfrom F,, arec; “n,c2 ‘n,andcz m, respectively, wherec; ~ 0.78248,
co & 1.73746, and c3 ~ 2.4149.

Facts 2.37 and 2.38 indicate that in the functional graph of a random function, most
points are grouped together in one giant component, and there is a small number of large
trees. Also, almost unavoidably, acycle of length about “n arises after following a path of
length 'n edges.
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2.2 Information theory

2.2.1 Entropy

2.39

2.40

2.41

2.42

2.43

2.44

Let X bearandom variablewhich takeson afinite set of valuesz1, x», . .. , 2, with prob-
ability P(X = z;) = p;, where0 < p;, < 1foreachi, 1 <1i <mn, andwherez _ypi=1
Also, let Y and Z be random variables which take on finite sets of values.

Theentropy of X isamathematical measure of the amount of information provided by
an observation of X. Equivalently, it isthe uncertainity about the outcome before an obser-
vation of X. Entropy is also useful for approximating the average number of bits required
to encode the elements of X .

Definition The entropy or uncertainty of X isdefinedtobe H(X) = — > """, pilgp; =
S pilg ( ) where, by convention, p; - lgp; = p; - 1g (pi) =0ifp; = 0.
Fact (propertiesof entropy) Let X be arandom variable which takes on n values.
() 0<H(X)<Ign.
(i) H(X)=0ifandonlyif p, = 1for somes, and p; = 0 for all j # i (that is, thereis
no uncertainty of the outcome).
(i) H(X)=1gnifandonlyif p; =1/nforeachi, 1 <i < n(thatis, al outcomesare
equally likely).

Definition Thejoint entropy of X and Y is defined to be

N P(X =2,V =y)lg(P(X =z,Y =y)),

where the summation indices « and y range over all valuesof X and Y, respectively. The
definition can be extended to any number of random variables.

Fact If X andY arerandom variables, then H(X,Y) < H(X)+ H(Y'), with equality if
and only if X and Y are independent.

Definition If X,Y arerandom variables, the conditional entropy of X givenY = y is
H(X|Y =y) ZP =2V = y)1g(P(X = zlY =vy)),

where the summation index x ranges over al values of X. The conditional entropy of X
givenY’, also called the equivocation of Y about X, is

H(X|Y) = ZP H(X|Y =y),
where the summation index y ranges over al valuesof Y.

Fact (propertiesof conditional entropy) Let X and Y be random variables.

(i) The quantity H(X|Y') measuresthe amount of uncertainty remaining about X after
Y has been observed.
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(i) HX|Y)>0and H(X|X) = 0.
(i) H(X,Y)=H(X)+ HY|X)=H(Y) + HXIY).
(iv) H(X|Y) < H(X),with equdity if and only if X and Y areindependent.

2.2.2 Mutual information

2.45 Definition The mutual information or transinformation of random variables X and Y is
I(X;Y) = H(X)— H(X|Y). Similarly, the transinformation of X and thepair Y, Z is
definedtobe I(X;Y,Z) = H(X) — H(X|Y, Z).

2.46 Fact (propertiesof mutual transinformation)

(i) Thequantity I(X;Y") can be thought of as the amount of information that Y reveals
about X. Similarly, the quantity I(X;Y, Z) can be thought of as the amount of in-
formation that Y and Z together reveal about X .

(i) I(X;Y) >0.

(ii) I(X;Y) = 0if and only if X and Y are independent (that is, Y contributes no in-
formation about X).

(iv) I(X;Y) = I(YV; X).

2.47 Definition The conditional transinformation of the pair X, Y given Z is defined to be
I(X;Y) = H(X|Z) - H(X|Y, ).

2.48 Fact (propertiesof conditional transinformation)
(i) Thequantity Iz(X;Y") can beinterpreted as the amount of information that Y™ pro-
vides about X, given that Z has already been observed.
() I(X;Y,2)=I(X;Y)+ Iy (X; 2).
(iii) 1z(X;Y) = Iz(Y; X).

2.3 Complexity theory

2.3.1 Basic definitions

Themaingoal of complexity theory isto provide mechanismsfor classifying computational
problems according to the resources needed to solve them. The classification should not
depend on a particular computational model, but rather should measure the intrinsic dif-
ficulty of the problem. The resources measured may include time, storage space, random
bits, number of processors, etc., but typically the main focusistime, and sometimes space.

2.49 Definition Analgorithmis awell-defined computational procedure that takes a variable
input and halts with an output.
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2.50

2.51

2.52

2.53

2.54

Of course, theterm “well-defined computational procedure” isnot mathematically pre-
cise. It can be made so by using formal computational models such as Turing machines,
random-access machines, or boolean circuits. Rather than get involved with the technical
intricacies of these models, it is simpler to think of an algorithm as a computer program
written in some specific programming language for a specific computer that takes a vari-
able input and halts with an output.

It isusually of interest to find the most efficient (i.e., fastest) algorithm for solving a
given computational problem. Thetimethat an algorithmtakesto halt dependsonthe* size”
of theprobleminstance. Also, theunit of time used should be made precise, especially when
comparing the performance of two algorithms.

Definition The size of the input is the total number of bits needed to represent the input
in ordinary binary notation using an appropriate encoding scheme. Occasionally, the size
of the input will be the number of itemsin the input.

Example (sizesof some objects)

(i) The number of bitsin the binary representation of a positiveinteger nis1 + |lgn|
bits. For simplicity, the size of n will be approximated by 1g n.
(i) If fisapolynomial of degreeat most k, each coefficient being anon-negativeinteger
at most n, thenthe sizeof f is(k + 1) Ign bits.
(iii) 1If A isamatrix with r rows, s columns, and with non-negative integer entries each
at most n, thenthe size of A isrslgn bits. a

Definition The running time of an algorithm on a particular input is the number of prim-
itive operations or “ steps’ executed.

Often astep istaken to mean a bit operation. For some algorithmsit will be more con-
venient to take step to mean something else such as a comparison, a machine instruction, a
machine clock cycle, a modular multiplication, etc.

Definition Theworst-caserunning time of an algorithm is an upper bound on the running
time for any input, expressed as a function of the input size.

Definition The average-case running time of an algorithm is the average running time
over al inputs of afixed size, expressed as afunction of the input size.

2.3.2 Asymptotic notation

2.55

It is often difficult to derive the exact running time of an algorithm. In such situations one
isforced to settle for approximations of the running time, and usually may only derive the
asymptotic running time. That is, one studies how the running time of the algorithm in-
creases as the size of the input increases without bound.

In what follows, the only functions considered are those which are defined on the posi-
tiveintegers and take on real valuesthat are always positive from some point onwards. L et
f and g be two such functions.

Definition (order notation)

(i) (asymptotic upper bound) f(n) = O(g(n)) if there exists a positive constant c and a
positive integer ng suchthat 0 < f(n) < cg(n) forall n > no.
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(ii) (asymptotic lower bound) f(n) = Q(g(n)) if there exists apositive constant c and a
positive integer ng suchthat 0 < cg(n) < f(n) for al n > ny.

(iii) (asymptotictight bound) f(n) = ©(g(n)) if there exist positive constants ¢; and cs,
and apositive integer ng such that c1g(n) < f(n) < cag(n) for al n > ny.

(iv) (o-notation) f(n) = o(g(n)) if for any positive constant ¢ > 0 there exists aconstant
ng > O suchthat 0 < f(n) < cg(n) for al n > n,.

Intuitively, f(n) = O(g(n)) meansthat f growsno faster asymptotically than g(n) to
within a constant multiple, while f(n) = Q(g(n)) meansthat f(n) grows at least as fast
asymptoticaly asg(n) towithinaconstant multiple. f(n) = o(g(n)) meansthat g(n) isan
upper bound for f(n) that is not asymptotically tight, or in other words, the function f(n)
becomesinsignificant relativeto g(n) asn getslarger. Theexpression o(1) is often used to
signify afunction f(n) whose limit asn approaches co is0.

2.56 Fact (propertiesof order notation) For any functions f(n), g(n), h(n), andl(n), the fol-
lowing are true.

(i) f(n)=0(g(n)) ifandonly if g(n) = Q(f(n)).

(i) f(n) =©O(g(n))ifandonlyif f(n) = O(g(n)) and f(n) = Q(g(n)).
(iii) 1If f(n) = O(h(n)) and g(n) = O(h(n)), then (f + g)(n) = O(h(n)).
(iv) If f(n) = O(h(n)) and g(n) = O(L(n)), then (f - g)(n) = O(h(n)l(n)).
(V) (reflexivity) f(n) = O(f(n)).

(vi) (transitivity) If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).

2.57 Fact (approximations of some commonly occurring functions)
(i) (polynomial function) If f(n) isapolynomial of degree k with positiveleading term,
then £(n) = ©(n*).
(ii) Forany constant ¢ > 0, log, n = ©(lgn).
(i) (sirling'sformula) For al integersn > 1,

— nAn o n+(1/(12n)
L ) (—) .
@ e

Thusn! = 27n (2)" (1+©(1)). Also, n! = o(n™) and n! = Q(2").
(iv) lg(n!) = ©(nlgn).

2.58 Example (comparative growth rates of some functions) Let e and ¢ be arbitrary constants
with0 < € < 1 < ¢. Thefollowing functions are listed in increasing order of their asymp-
totic growth rates:

1<Inlnn <Ilnn <exp( Innlnlnn) < nf <n®<n®" < <n® <. O

2.3.3 Complexity classes

2.59 Definition A polynomial-time algorithmis an algorithm whose worst-case running time
function is of the form O(n*), where n istheinput size and k is aconstant. Any algorithm
whose running time cannot be so bounded is called an exponential-time algorithm.

Roughly speaking, polynomial-time algorithms can be equated with good or efficient
algorithms, while exponential-time algorithms are considered inefficient. There are, how-
ever, some practical situations when this distinction is not appropriate. When considering
polynomial-time complexity, the degree of the polynomial issignificant. For example, even
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2.60

2.61

2.62

2.63

2.64

2.65

though an algorithm with arunning time of O(n!™!27), n being theinput size, is asymptot-
ically slower that an algorithm with arunning time of O(n!%), the former agorithm may
be faster in practice for smaller values of n, especially if the constants hidden by the big-O
notation are smaller. Furthermore, in cryptography, average-case complexity is more im-
portant than worst-case complexity — a necessary condition for an encryption scheme to
be considered secureisthat the corresponding cryptanalysis problem is difficult on average
(or more precisely, amost always difficult), and not just for some isolated cases.

Definition A subexponential-time algorithm is an algorithm whose worst-case running
time function is of the form e°(™), where n isthe input size.

A subexponential-timealgorithm isasymptotically faster than an algorithm whose run-
ning time is fully exponential in the input size, while it is asymptotically ower than a
polynomial-time algorithm.

Example (subexponential running time) Let A be an algorithm whose inputs are either
elements of afinitefield IF, (see §2.6), or an integer g. If the expected running time of A is
of theform

Lyla,c] = O (exp ((c+ o(1))(Ing)*(Inlng)*~*)), (2.3)

where ¢ is a positive constant, and « is a constant satisfying0 < « < 1,then Aisa
subexponential-time algorithm. Observe that for & = 0, L4[0, ¢] isapolynomia inlng,
whilefor o = 1, L[1, ¢ isapolynomial in ¢, and thus fully exponential inIn g. O

For simplicity, the theory of computational complexity restricts its attention to deci-
sion praoblems, i.e., problems which have either YES or NO as an answer. Thisis not too
restrictive in practice, as al the computational problems that will be encountered here can
be phrased as decision problemsin such away that an efficient algorithm for the decision
problem yields an efficient algorithm for the computational problem, and vice versa.

Definition The complexity class P isthe set of al decision problemsthat are solvablein
polynomial time.

Definition The complexity class NP is the set of all decision problemsfor whicha YES
answer can beverifiedin polynomial timegiven someextrainformation, called acertificate.

Definition Thecomplexity class co-NP isthe set of all decision problemsfor whichaNO
answer can be verified in polynomial time using an appropriate certificate.

It must be emphasizedthat if adecision problemisin NP, it may not bethe casethat the
certificate of a Y ESanswer can be easily obtained; what is asserted isthat such acertificate
does exist, and, if known, can be used to efficiently verify the YES answer. The sameis
true of the NO answers for problemsin co-NP.

Example (problemin NP) Consider the following decision problem:

COMPOSITES

INSTANCE: A positive integer n.

QUESTION: Isn composite? That is, are thereintegersa, b > 1 such that n = ab?
COMPOSITESbelongsto NP becauseif aninteger n iscomposite, then thisfact canbe

verified in polynomial timeif oneisgiven adivisor a of n, wherel < a < n (the certificate

in this case consists of the divisor a). Itisin fact also the case that COMPOSI TES belongs

to co-NP. It is still unknown whether or not COMPOSITES belongsto P. O
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2.66

2.67

2.68

2.69

2.70

2.71

2.72

Fact P C NP and P C co-NP.

The following are among the outstanding unresolved questions in the subject of com-
plexity theory:
1. IsP=NP?
2. ISNP = co-NP?
3. IsP = NP N co-NP?
M ost expertsare of the opinion that the answer to each of thethree questionsisNO, although
nothing along these lines has been proven.
The notion of reducibility is useful when comparing the relative difficulties of prob-
lems.

Definition Let L; and L, be two decision problems. L, issaid to polytime reduce to L,
written L; <p Lo, if thereis an algorithm that solves L; which uses, as a subroutine, an
algorithm for solving Ls, and which runsin polynomial timeif the algorithm for Lo does.

Informally, if L; <p Lo, then L, is at least as difficult as L1, or, equivalently, L, is
no harder than L.

Definition Let L, and Ly be two decision problems. If L; <p Ls and Ly <p L1, then
L, and L, are said to be computationally equivalent.

Fact Let L1, Lo, and L3 be three decision problems.
(l) (tranS|tIVIty) If L1 <p Ly and Ly <p Lg, then L1 <p Ls.
(II) |fL1 <p Lo andLgeP,thenLleP.

Definition A decision problem L issaid to be NP-completeif
(i) L € NP, and
(i) Ly <p Lforevery L; € NP.

The class of all NP-complete problemsis denoted by NPC.

NP-complete problems are the hardest problems in NP in the sense that they are at
least asdifficult asevery other problemin NP. There are thousands of problemsdrawn from
diverse fields such as combinatorics, number theory, and logic, that are known to be NP-
complete.

Example (subset sum problem) The subset sum problem is the following: given a set of
positiveintegers {a1, as, . . . , a, } and apositive integer s, determine whether or not there
is asubset of the a; that sum to s. The subset sum problem is NP-compl ete. |

Fact Let L; and L, be two decision problems.
(i) If Ly isNP-completeand L; € P, then P =NP.
(i) If L; € NP, Ly isNP-complete, and L, <p L1, then L; isaso NP-complete.
(iii) If Ly isNP-completeand L, € co-NP, then NP = co-NP.

By Fact 2.72(i), if a polynomial-time algorithm is found for any single NP-complete
problem, then it isthe casethat P = NP, aresult that would be extremely surprising. Hence,
aproof that a problem is NP-complete provides strong evidence for itsintractability. Fig-
ure 2.2 illustrates what is widely believed to be the relationship between the complexity
classes P, NP, co-NP, and NPC.

Fact 2.72(ii) suggests the following procedure for proving that a decision problem L
is NP-complete:
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NP N co-NP NP

)

Figure 2.2: Conjectured relationship between the complexity classes P, NP, co-NP, and NPC.

1. Provethat L; € NP.
2. Select aproblem Lo that is known to be NP-complete.
3. Provethat Ly <p L.

2.73 Definition A problemisNP-hardif thereexists someNP-complete problemthat polytime

reducesto it.

Note that the NP-hard classification is not restricted to only decision problems. Ob-
serve also that an NP-complete problem is also NP-hard.

2.74 Example (NP-hard problem) Given positiveintegersay, as, . .. , a,, and a positive inte-

ger s, the computational version of the subset sum problem would ask to actually find a
subset of the a; which sumsto s, provided that such a subset exists. This problem is NP-
hard. O

2.3.4 Randomized algorithms

2.75

The algorithms studied so far in this section have been deterministic; such algorithmsfol-
low the same execution path (sequence of operations) each timethey execute with the same
input. By contrast, a randomized algorithm makes random decisions at certain pointsin
the execution; hence their execution paths may differ each time they are invoked with the
same input. The random decisions are based upon the outcome of a random number gen-
erator. Remarkably, there are many problems for which randomized algorithms are known
that are more efficient, both in terms of time and space, than the best known deterministic
algorithms.

Randomized algorithms for decision problems can be classified according to the prob-
ability that they return the correct answer.

Definition Let A be arandomized algorithm for a decision problem L, and let I denote
an arbitrary instance of L.
(i) A hasO-sided error if P(A outputs YES | I'sanswer isYES) = 1, and
P(A outputs YES | I'sanswer isNO ) = 0.
(i) A has1-sided error if P(A outputs YES | I'sanswer isYES) > 1, and
P(A outputs YES | I'sanswer isNO ) = 0.
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(iii) A has2-sided error if P(A outputs YES | I'sanswer isYES) > 2, and
P(A outputs YES | I'sanswer isNO ) < 1.

The number % in the definition of 1-sided error is somewhat arbitrary and can be re-
placed by any positive constant. Similarly, the numbers % and % in the definition of 2-sided
error, can bereplaced by 7 + e and 5 — ¢, respectively, for any constant e, 0 < € < 3.

2.76 Definition Theexpected running time of arandomized algorithmisan upper bound on the
expected running time for each input (the expectation being over al outputs of the random
number generator used by the algorithm), expressed as a function of the input size.

The important randomized complexity classes are defined next.

2.77 Definition (randomized complexity classes)

(i) The complexity class ZPP (“zero-sided probabilistic polynomial time”) is the set of
all decision problems for which there is a randomized algorithm with O-sided error
which runs in expected polynomial time.

(i) The complexity class RP (“randomized polynomial time”) is the set of all decision
problems for which there is arandomized algorithm with 1-sided error which runsin
(worst-case) polynomial time.

(iii) The complexity class BPP (“bounded error probabilistic polynomial time”) isthe set
of all decision problemsfor which thereisarandomized algorithm with 2-sided error
which runsin (worst-case) polynomial time.

2.78 Fact PC ZPP C RP C BPP and RP C NP.

2.4 Number theory

2.4.1 The integers
Theset of integers{... ,—3,-2,-1,0,1,2,3,...} isdenoted by the symbol Z.

2.79 Definition Leta, b beintegers. Then a dividesb (equivalently: a isadivisor of b, or a is
afactor of b) if thereexistsaninteger c suchthat b = ac. If a dividesb, then thisis denoted
by alb.

2.80 Example (i) —3|18,since 18 = (—3)(—6). (ii) 173|0, since 0 = (173)(0). O

The following are some elementary properties of divisibility.

2.81 Fact (propertiesof divisibility) For dl a, b, ¢ € Z, thefollowing are true:
(i) ala.
(i) If a|b and b|c, then alc.
(iii) If a]b and alc, then a|(bz + cy) fordl z,y € Z.
(iv) If a|b and b|a, then a = +b.
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2.82 Definition (division algorithm for integers) If ¢ and b are integerswith b > 1, then or-
dinary long division of a by b yields integers ¢ (the quotient) and » (the remainder) such
that
a=gb+r, whee0<r<b.
Moreover, ¢ and r are unique. The remainder of the division is denoted a mod b, and the
guotient is denoted a div b.
2.83 Fact Leta,b e Zwithd # 0. Thenadivb = [a/b] anda mod b = a — bla/b].
2.84 Example If a = 73,b = 17,theng = 4andr = 5. Hence 73 mod 17 = 5 and
73 div 17 = 4. O
2.85 Definition Aninteger cisacommon divisor of a and b if ¢|a and c|b.
2.86 Definition A non-negative integer d is the greatest common divisor of integers a and b,
denoted d = ged(a, b), if
(i) disacommon divisor of a and b; and
(ii) whenever c|a and ¢|b, then ¢|d.
Equivalently, ged(a, b) isthelargest positive integer that divides both a and b, with the ex-
ception that gcd(0,0) = 0.
2.87 Example Thecommondivisorsof 12and 18 are{+1, £2,+£3,+6},andgcd(12, 18) = 6.
(I
2.88 Definition A non-negativeinteger d istheleast common multiple of integersa and b, de-
noted d = lcm(a, b), if
(i) ald and b|d; and
(ii) whenever a|c and b|c, then d|c.
Equivalently, lem(a, b) isthe smallest non-negative integer divisible by both a and b.
2.89 Fact If ¢ and b are positive integers, then lem(a, b) = a - b/ ged(a, b).
2.90 Example Sinceged(12,18) = 6, it followsthat lem(12,18) = 12-18/6 = 36. O
2.91 Definition Twointegersa andb aresaidtoberelatively primeor coprimeif ged(a, b) = 1.
2.92 Definition Aninteger p > 2 issaid to be primeif its only positive divisorsare 1 and p.
Otherwise, p is called composite.
The following are some well known facts about prime numbers.
2.93 Fact If p isprimeand p|ab, then either p|a or p|b (or both).
2.94 Fact There are an infinite number of prime numbers.
2.95 Fact (primenumber theorem) Let (x) denote the number of prime numbers < z. Then

lim m(z) =1

z—oox/Inx

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.



§2.4 Number theory 65

This means that for large values of z, 7(z) is closely approximated by the expres-
sion z/Inz. For instance, when z = 109, 7(z) = 455,052,511, whereas |z/Inz| =
434,294, 481. A more explicit estimate for 7() is given below.

2.96 Fact Let m(x) denote the number of primes < z. Thenfor z > 17

xT
7T(.’E) > m

andforz > 1
X
1.25506—.
m(z) < o

2.97 Fact (fundamental theorem of arithmetic) Every integer n > 2 has afactorization as a
product of prime powers:;
n=pi'py’ - Pyt
where the p; are distinct primes, and the e; are positive integers. Furthermore, the factor-
ization is unique up to rearrangement of factors.

2.98 Fact Ifa = p{'p3?---pg*, b= p{lpz2 ---pi’“, whereeache; > 0and f; > 0, then

min(el,fl)prznin(ez,fz) . _pglin(ekvfk)

ged(a,b) = py
and

lcm(a, b) _ prlnax(elyfl)plznax(ez,h) . 'p;nax(ek’fk).

2.99 Example Leta = 4864 = 28-19,b = 3458 = 2- 7 - 13 - 19. Then gcd (4864, 3458) =
219 = 38 and lcm (4864, 3458) = 28 - 7- 13- 19 = 442624. (]

2.100 Definition Forn > 1, let ¢(n) denote the number of integersin theinterval [1, n] which
arerelatively primeton. Thefunction ¢ iscalled the Euler phi function (or the Euler totient
function).

2.101 Fact (propertiesof Euler phi function)
(i) f pisaprime, then¢(p) =p — 1.
(i) The Euler phi function is multiplicative. That is, if ged(m,n) = 1, then ¢(mn) =
p(m) - $(n).

€1, €2

(iii) If n = p{'ps5® - - - pi¥ isthe prime factorization of n, then
¢(n)_n<1i> <1i> <1i)
D1 D2 Dk
Fact 2.102 gives an explicit lower bound for ¢(n).

2.102 Fact For all integersn > 5,
n

¢(n) >

6lnlnn’
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2.4.2 Algorithmsin Z

Let a and b be non-negative integers, each less than or equal to n. Recall (Example 2.51)
that the number of bitsin the binary representation of n is [lgn| + 1, and this number is
approximated by Ig n. The number of bit operationsfor the four basic integer operations of
addition, subtraction, multiplication, and division using the classical algorithmsis summa-
rizedin Table2.1. Thesealgorithmsare studied in more detail in §14.2. More sophisticated
techniques for multiplication and division have smaller complexities.

Operation ‘ Bit complexity ‘
Addition a+b O(lga+1gb) =0O(lgn)
Subtraction a—1b O(lga+1gb) =O(lgn)
Multiplication a-b O((Iga)(1gb)) = O((Ign)?)
Division a=gb+r | O((gq)(Igb)) = O((Ign)?)

Table 2.1: Bit complexity of basic operationsin Z.

The greatest common divisor of two integers a and b can be computed via Fact 2.98.
However, computing aged by first obtaining prime-power factorizations does not result in
an efficient algorithm, as the problem of factoring integers appears to be relatively diffi-
cult. The Euclidean algorithm (Algorithm 2.104) is an efficient algorithm for computing
the greatest common divisor of two integers that does not require the factorization of the
integers. It is based on the following simple fact.

2.103 Fact If a and b are positive integers with a > b, then ged(a, b) = ged (b, a mod b).

2.104 Algorithm Euclidean algorithm for computing the greatest common divisor of two integers

INPUT: two non-negative integers a and b witha > b.
OUTPUT: the greatest common divisor of a and b.

1. Whileb # 0 do the following:
1.1 Setr<—a mod b, a<-b, b<r.
2. Return(a).

2.105 Fact Algorithm 2.104 has arunning time of O((Ign)?) bit operations.

2.106 Example (Euclidean algorithm) The following are the division steps of Algorithm 2.104
for computing ged (4864, 3458) = 38:

4864 = 1-3458 4 1406
3458 = 2-1406 + 646
1406 = 2-6464 114
646 = 5-114476
114 = 1-76+38
6 = 2-384+0.
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The Euclidean a gorithm can be extended so that it not only yieldsthe greatest common
divisor d of two integersa and b, but also integers z and y satisfying ax + by = d.

2.107 Algorithm Extended Euclidean algorithm

INPUT: two non-negative integers a and b with a > b.
OUTPUT: d = ged(a, b) and integers z, y satisfying ax + by = d.
1. If b = 0 then set d<—a, x<1, y<0, andreturn(d,z,y).
2. Set 11?2(—1, 11?1(—0, y2<—0, y191-
3. Whileb > 0 do the following:
3.1 g«la/b], r<a— qb, T3 — qT1, Y<Y2 — qQY1-
3.2 a<b, br, xox1, T¢I, Y2y1, and y1<y.
4. Setd<—a, r<x2, y<1y2, andreturn(d,z,y).

2.108 Fact Algorithm 2.107 has arunning time of O((Ign)?) bit operations.

2.109 Example (extended Euclidean algorithm) Table 2.2 shows the steps of Algorithm 2.107
with inputsa = 4864 and b = 3458. Hence gcd(4864,3458) = 38 and (4864)(32) +
(3458)(—45) = 38. O

Lo r] 2] y| al o] @[ s v2[ w|
= - -] _[4s64]asss] 1] 0] 0] 1
1| 1406 | 1| —1 348 | 1406 | o 1| 1| -1
2| 646 | —2| 3|1406| 646 | 1| —2| —1| 3
o | 14| 5| 7| 66| 14| 2| 5| 3| -7
5| 76| 27| 38| m4| 76| 5| 21| —7| 38
1| 38| 32| -45| 76| 38| 27| 32| 38| -45
2| of-o1| 128| 38| o 32| -91|-45]| 128

Table 2.2: Extended Euclidean algorithm (Algorithm 2.107) with inputs a = 4864, b = 3458.

Efficient algorithms for ged and extended ged computations are further studied in §14.4.

2.4.3 The integers modulo n
Let n be apositive integer.

2.110 Definition If a and b are integers, then o is said to be congruent to & modulo n, written
a =b (mod n),if ndivides(a—b). Theinteger n iscalled the modulus of the congruence.

2.111 Example (i)24 =9 (mod 5) since24 —9 =3 -5.
(i) =11 =17 (mod 7) since—11—17=—4-7. O

2.112 Fact (propertiesof congruences) For al a, a1, b, b1, ¢ € Z, thefollowing are true.

(i) a=b (mod n) if and only if a and b leave the same remainder when divided by n.
(i) (reflexivity) a = a (mod n).
(iii) (symmetry) If a = b (mod n) thenb = a (mod n).
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2.113

2.114

2.115

2.116

2.117

2.118

2.119

2.120

2.121

(iv) (transitivity) If a =b (mod n) andb = ¢ (mod n), thena = ¢ (mod n).
(v) fa = a; (modn)andbd = b; (mod n),thena +b = a; + b; (mod n) and
ab = a1b; (mod n).

The equivalence class of an integer a is the set of al integers congruent to & modulo
n. From properties (ii), (iii), and (iv) above, it can be seen that for afixed n the relation of
congruence modulo n partitions Z into equivalence classes. Now, if a = gn + r, where
0 <r < n,thena =r (mod n). Hence each integer a is congruent modulo n to aunique
integer between 0 and n — 1, called the least residue of @ modulo n. Thusa and r areinthe
same equivalence class, and so » may simply be used to represent this equivalence class.

Definition The integers modulo n, denoted Z,,, is the set of (equivalence classes of) in-
tegers {0, 1,2,...,n — 1}. Addition, subtraction, and multiplication in Z,, are performed
modulo n.

Example Zss = {0,1,2,...,24}. InZg5, 13 + 16 = 4,since 13 + 16 = 29 = 4
(mod 25). Similarly, 13 - 16 = 8 in Zss. O

Definition Leta € Z,,. The multiplicative inverse of a modulo n isan integer € Z,,
suchthat ax =1 (mod n). If suchan z exists, thenit isunique, and a is said to be invert-
ible, or aunit; theinverse of a is denoted by a 1.

Definition Leta,b € Z,. Divisionof a by b modulo n isthe product of @ and b~ modulo
n, and is only defined if b isinvertible modulo n.

Fact Leta € Z,. Thena isinvertibleif and only if ged(a,n) = 1.

Example Theinvertible elementsin Zg are 1, 2, 4, 5, 7, and 8. For example, 4™ = 7

because4 - 7=1 (mod 9). O
Thefollowing is a generalization of Fact 2.117.

Fact Letd = ged(a,n). The congruence equation az = b (mod n) hasa solution z if

and only if d divides b, in which case there are exactly d solutions between 0 and n — 1;
these solutions are all congruent modulo n/d.

Fact (Chinese remainder theorem, CRT) If theintegersny, na, ... ,ny are pairwiserela
tively prime, then the system of simultaneous congruences

a1 (mod mnq)

= a2 (mod no)

z = ar (mod ng)
has a unique solution modulo n = nyng - - - .
Algorithm (Gauss's algorithm) The solution z to the simultaneous congruences in the
Chinese remainder theorem (Fact 2.120) may be computed as x = Zle a; N; M; mod n,

where N; = n/n; and M; = N[l mod n;. These computations can be performed in
O((Ign)?) bit operations.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.



§2.4 Number theory 69

2.122

2.123

2.124

2.125

2.126

2.127

2.128

2.129

2.130

2.131

Another efficient practical algorithm for solving simultaneous congruencesin the Chinese
remainder theorem is presented in §14.5.

Example The pair of congruencesz = 3 (mod 7), z = 7 (mod 13) has aunique solu-
tionz =59 (mod 91). O

Fact If gcd(ny,n2) = 1,thenthepair of congruencesz = a (mod n4),z = a (mod ny)
has aunique solution z = a (mod nins).

Definition The multiplicative group of Z,, isZ) = {a € Z, | gecd(a,n) = 1}.In
particular, if nisaprime, thenZ; = {a|1<a <n-—1}.

Definition Theorder of Z;. is defined to be the number of elementsin Z, namely |Z;|.

It follows from the definition of the Euler phi function (Definition 2.100) that |Z) | =
¢(n). Noteaso thatif a € Z; andb € Z;, thena - b € Z;, and so Z,, is closed under
multiplication.

Fact Letn > 2 bean integer.
(i) (Euler’stheorem) If a € Z*, then a®™ =1 (mod n).
(ii) If nisaproduct of distinct primes, andif r = s (mod ¢(n)), thena” = a® (mod n)
for all integers a. In other words, when working modulo such an n, exponents can
be reduced modulo ¢(n).

A specia case of Euler’'stheorem is Fermat's (little) theorem.

Fact Let p beaprime.
(i) (Fermat'stheorem) If gcd(a,p) = 1,thena?~! =1 (mod p).
(i) If r = s (mod p — 1), then a”™ = a® (mod p) for all integers a. In other words,
when working modulo a prime p, exponents can be reduced modulo p — 1.
(iii) Inparticular, a? = a (mod p) for al integersa.

Definition Leta € Z;. Theorder of a, denoted ord(a), istheleast positiveinteger ¢ such
that a’ =1 (mod n).

Fact If theorder of a € Z) ist,anda® = 1 (mod n), then ¢ divides s. In particular,

tp(n).

Example Letn = 21. Then Z3;, = {1,2,4,5,8,10,11,13,16,17,19,20}. Note that
#(21) = ¢(7)p(3) = 12 = |Z3,|. Theordersof elementsin Z3, arelistedin Table2.3. O

a € Zy 1121415811011 |13 16|17 |19 | 20
oderofa |16 |3|6]2| 6| 6 21316 |62

Table 2.3: Ordersof elementsin Z3;.

Definition Leta € Z,,. If the order of a is ¢(n), then « is said to be a generator or a
primitive element of Z,.. If Z, has agenerator, then Z;, issaid to be cyclic.
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2.132 Fact (propertiesof generatorsof Z.)
(i) Z* hasagenerator if and only if n = 2,4, p* or 2p*, where p is an odd prime and
k > 1. In particular, if p isaprime, then Z,, has a generator.

(ii) If cisagenerator of Z, then Z) = {a'mod n | 0 < i < ¢(n) — 1}.

(iii) Supposethat o isagenerator of Z. Thenb = o mod n is aso agenerator of Z;,
if and only if ged(z, ¢(n)) = 1. It follows that if Z;, is cyclic, then the number of
generatorsis ¢(¢(n)).

(iv) a € Z! isagenerator of Z* if and only if a?(™)/P #£ 1 (mod n) for each prime
divisor p of ¢(n).

2.133 Example Z3, isnot cyclic sinceit does not contain an element of order ¢(21) = 12 (see
Table 2.3); note that 21 does not satisfy the condition of Fact 2.132(i). On the other hand,
Z3 iscyclic, and has a generator o = 2. |

2.134 Definition Leta € Z;,. a issaid to be aquadratic residue modulo n, or a square modulo
n, if thereexistsan z € Z;, suchthat 22 = a (mod n). If nosuch z exists, then a iscalled
a quadratic non-residue modulo n. The set of all quadratic residues modulo n is denoted
by Q,, and the set of all quadratic non-residuesis denoted by Q,,.

Note that by definition 0 ¢ Z, whence0 ¢ Q,, and0 € Q,,.
2.135 Fact Let p be an odd prime and let o be a generator of Z,. Thena € Z isaquadratic
residue modulo p if and only if a = o’ mod p, where s is an even integer. It follows that

|Qpl = (p—1)/2and |Q,| = (p —1)/2; that is, half of the elementsin Z, are quadratic
residues and the other half are quadratic non-residues.

2.136 Example o = 6 isagenerator of Z];. The powers of « arelisted in the following table.

1 0|12 |3(4|5| 6 |7]8]9|10]|11
o‘mod13 || 1|6 |10 |89 |2 |12|7|3|5| 4 |11

Hence Q15 = {1,3,4,9,10,12} and Q5 = {2,5,6,7,8, 11}. O

2.137 Fact Let n beaproduct of two distinct odd primesp and ¢, n = pg. Thena € Z isa
quadratic residue modulo n if and only if a« € Q, anda € Q. Itfollowsthat |Q,| =

|Qpl - 1Qql = (p—1)(g—1)/4and |Q,,| = 3(p — 1)(¢ — 1)/4.
2.138 Example Letn = 21. Then Qa1 = {1,4,16}and Q,, = {2,5,8,10,11,13,17, 19, 20}.
0

2.139 Definition Leta € Q,,. If x € Z;, satisfiesz? = a (mod n), then z is called a square
root of @ modulo 7.

2.140 Fact (number of sguare roots)

(i) If pisanodd primeand a € @), then a has exactly two square roots modulo p.
(if) Moregeneraly, letn = p7' p5” - - - p.* wherethep; aredistinct odd primesand e; >
1. If a € Q,, then a has precisely 2* distinct square roots modulo 7.

2.141 Example Thesguarerootsof 12 modulo 37 are 7 and 30. The squarerootsof 121 modulo
315 arel11, 74,101, 151, 164, 214, 241, and 304. O
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2.4.4 Algorithmsin Z,

2.142

2.143

2.144

Letn beapositiveinteger. Asbefore, the elementsof Z,, will be represented by theintegers
{0,1,2,...,n —1}.
Observethat if a,b € Z,, then

a+b, ifa+b<n,

(a—i—b)modn:{ atb—n, ifatbh>n

Hence modular addition (and subtraction) can be performed without the need of along di-
vision. Modular multiplication of a and b may be accomplished by simply multiplying a
and b as integers, and then taking the remainder of the result after division by n. Inverses
in Z,, can be computed using the extended Euclidean algorithm as next described.

Algorithm Computing multiplicative inverses in Z,,

INPUT: a € Z,,.
OUTPUT: ¢! mod n, provided that it exists.
1. Usetheextended Euclidean algorithm (Algorithm 2.107) to find integersx and y such
that ax + ny = d, whered = ged(a, n).
2. If d > 1, then a—! mod n does not exist. Otherwise, return(z).

Modular exponentiation can be performed efficiently with the repeated square-and-
multiply algorithm (Algorithm 2.143), which is crucial for many cryptographic protocols.
One version of this algorithm is based on the following observation. Let the binary repre-
sentation of k be Y-°_ k;2¢, whereeach k; € {0,1}. Then

t
ak _ Hakﬂi _ (a20)k0(a21)k1 . (a2t)kt.
=0

Algorithm Repeated square-and-multiply algorithm for exponentiation in Z,,

INPUT: @ € Z,,, and integer 0 < k < n whose binary representationis k = ZEZO k20,
OUTPUT: ¢* mod n.
1. Setb«1. If k = 0 then return(d).
2. Set A«a.
3. If kg = 1 then set b<—a.
4. For i from 1 to t do the following:
4.1 Set A—A? mod n.
4.2 If k; = 1then set b<—A - b mod n.

5. Return(b).
Example (modular exponentiation) Table 2.4 showsthe stepsinvolvedin the computation
of 5596 mod 1234 = 1013. O

Thenumber of bit operationsfor the basic operationsin Z,, issummarizedin Table 2.5.
Efficient algorithms for performing modular multiplication and exponentiation are further
examined in §14.3 and §14.6.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.



72 Ch. 2 Mathematical Background

7 0 1 2 3 4 5 6 7 8 9
ki || O 0 1 0 1 0 1 0 0 1
A |l 5|25 | 625 | 681 | 1011 | 369 421 779 947 925
b 1 1] 625 | 625 67 67 | 1059 | 1059 | 1059 | 1013

Table 2.4: Computation of 5°°¢ mod 1234.

Operation ‘ Bit complexity ‘
Modular addition (a+b) mod n O(lgn)
Modular subtraction (a —b) mod n O(lgn)
Modular multiplication (a-b) modn O((1gn)?)
Modular inversion a~! modn O((1gn)?)
Modular exponentiation a* modn, k <n | O((Ign)?)

Table 2.5: Bit complexity of basic operationsin Z,.

2.4.5 The Legendre and Jacobi symbols

The Legendre symbol is a useful tool for keeping track of whether or not an integer a is a
guadratic residue modulo a prime p.

2.145 Definition Let p be an odd prime and a an integer. The Legendre symbol ( ) is defined

to be
a 0, ?fp\a,
<—> = 1, ifa e Qp,
p ~1, ifaeqQ,

2.146 Fact (propertiesof Legendre symbol) Let p be an odd primeand a, b € Z. Then the Leg-
endre symbol has the following properties:
(i) (&) = a?~1/2 (mod p). In particular, (5) =1lend (3F) =
—1€Qpifp=1 (mod4),and-1€ Q,if p=3 (mod 4).
(i) (% b) = (& )( ). Henceif a € Zy, then (%- ) =1.
(iii) If a = b (mod p), then (p) (%).
(iv) () = (~1)®*~1/8 Hence (3) =1lifp=1or7 (mod 8),and (¢) = ~1ifp=3
or5 (mod 8).
(v) (law of quadratic reciprocity) If ¢ isan odd prime distinct from p, then

() (e

In other words, (%) = (%) unless both p and ¢ are congruent to 3 modulo 4, in which
e (5) =~ 4)

The Jacobi symbol is ageneralization of the Legendre symbol to integers n which are
odd but not necessarily prime.

(=1)®»=1/2, Hence
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2.147 Definition Letn > 3 beoddwith primefactorizationn = pi*p5* - - - p*. Thenthe Jacobi
symbol (£) is defined to be

()-G) G -G
n p p k)
Observe that if n is prime, then the Jacobi symbol isjust the Legendre symbol.

2.148 Fact (propertiesof Jacobi symbol) Letm > 3,n > 3 beodd integers, and a, b € Z. Then
the Jacobi symbol has the following properties:

(i) (2) =0,1, or — 1. Moreover, (%) = 0if and only if ged(a, n) # 1.
(i) () = (2)(2). Henceif a € Z, then (%) = 1.

(i) (55) = o) (3)-

(iv) If a=b (mod n), then (£) = (%)

W) @) =1

(vi) (&) = (=1)"1/2 Hence (=2) = 1ifn =1 (mod 4),and (=) = -1ifn =3
(mod 4).

(vii) (2) = (-1)™*-1D/8, Hence (2) = 1ifn = 1or7 (mod 8), and (2) = 1 if
n=3o0r5 (mod 8).
(viii) () = (Z)(—1)tm=D(®=1/4 |n other words, ()

= () unlessboth m and n are
congruent to 3 modulo 4, in which case () = —(Z).

m

By properties of the Jacobi symbol it follows that if n isodd and a = 2¢a; where a;

isodd, then
(E) _ <2_> (ﬂ) _ (E)e(w>(1)<all><nl>/e
n n)\n n ai

This observation yields the following recursive algorithm for computing (%) , Which does
not require the prime factorization of n.

2.149 Algorithm Jacobi symbol (and Legendre symbol) computation

JACOBI(a,n)
INPUT: an odd integer n > 3, and aninteger a, 0 < a < n.
OUTPUT: the Jacobi symbol (%) (and hence the Legendre symbol when n is prime).
1. If a = 0 then return(0).
2. If a = 1 then return(1).
3. Writea = 2%a,, wherea; isodd.
4. If e iseventhen set s«<—1. Otherwiseset s«1ifn=10r7 (mod 8), or set s« — 1
ifn=3o0r5 (mod 8).
If n =3 (mod 4) anda; =3 (mod 4) then set s« — s.
Set ni<n mod ay.
7. If a; = 1 then return(s); otherwise return(s - JACOBI(n1,a1)).

o u

2.150 Fact Algorithm 2.149 has arunning time of O((1gn)?) bit operations.
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2.151

2.152

2.153

2.154

2.155

Remark (finding quadratic non-residues modulo a prime p) Let p denote an odd prime.
Eventhoughit is known that half of the elementsin Z;, are quadratic non-residues modulo
p (see Fact 2.135), there is no deter ministic polynomial-time algorithm known for finding
one. A randomized algorithm for finding aquadratic non-residueisto simply select random
integers a € Z,, until one is found satisfying (9) = —1. The expected number iterations
beforeanon-residueisfoundis2, and hencethe proceduretakes expected polynomial-time.

Example (Jacobi symbol computation) For a = 158 andn = 235, Algorithm 2.149 com-

putes the Jacobi symbol (358) as follows:
158 2 79 235 o 77
() = () (o) =0 (55~ ()
9\, _yrersa _ (2 _
(77)( 2 =\m) =t

Unlike the Legendre symbol, the Jacobi symbol (%) does not reveal whether or not a
is aquadratic residue modulo n. It isindeed true that if a € @, then (%) = 1. However,
(%) =1 doesnotimply that a € Q...

Example (quadratic residues and non-residues) Table 2.6 lists the elementsin Z3, and
their Jacobi symbols. Recall from Example 2.138 that Q2; = {1,4,16}. Observe that

g

a€Zs |[1| 2| 4] 5 10 | 11| 13 | 16 | 17 | 19 | 20
a®>modn |1 6| 4| 1| 16| 16| 1| 4| 16| 4| 1
&) 1| =1 1| =1|=1] 1|-1| 1| 1|-=1| 1|-1
) 1| 1| 1| =1| 1|=1| 1|=1| 1]-1|=1|-1
(&) 1|-1| 1| 1| -1|-1|-1|-1| 1] 1|-1| 1

Table 2.6: Jacobi symbols of elementsin Z3, .

Definition Letn > 3 beanodd integer, and let J,, = {a € Z; | (%) = 1}. The set of

pseudosquares modulo 7, denoted @n isdefined to bethe set J,, — Q.

Fact Letn = pq be aproduct of two distinct odd primes. Then |Q,.| = |Qn| = (p —
1)(g —1)/4; that is, half of the elementsin J,, are quadratic residues and the other half are
pseudosquares.

2.4.6 Blum integers

2.156

2.157

2.158

Definition A Bluminteger is a composite integer of the form n = pq, where p and ¢ are
distinct primes each congruent to 3 modulo 4.

Fact Letn = pq beaBluminteger, andlet a € Q,. Then a has precisely four square
roots modulo n, exactly one of whichisasoin @,.

Definition Letn beaBluminteger andlet a € Q,,. The unique squareroot of a in @, is
called the principal square root of a modulo n.
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2.159 Example (Bluminteger) For the Blum integer n = 21, J,, = {1,4,5,16,17,20} and
Qn = {5,17,20}. Thefour squareroots of a« = 4 are 2, 5, 16, and 19, of which only 16 is
alsoin Q21. Thus 16 isthe principal square root of 4 modulo 21. O

2.160 Fact If n = pq isaBlum integer, then the function f : Q, — @, defined by f(z) =
x? mod n isapermutation. The inverse function of £ is:

i) = 2((p=1D(q=1)+4)/8 1,54 n.

2.5 Abstract algebra

This section provides an overview of basic algebraic objects and their properties, for refer-
encein theremainder of thishandbook. Severa of the definitionsin §2.5.1 and §2.5.2 were
presented earlier in §2.4.3 in the more concrete setting of the algebraic structure Z,.

2.161 Definition A binary operation « onaset S isamapping fromS x Sto S. Thatis, xisa
rule which assigns to each ordered pair of elementsfrom .S an element of S.

2.5.1 Groups
2.162 Definition A group (G, x) consists of aset G with a binary operation  on G satisfying
the following three axioms.

(i) Thegroup operationisassociative. Thatis, a (bxc) = (a*b)xcforal a,b,c € G.
(il) Thereisanelement 1 € G, called theidentity element, suchthata « 1 = 1%xa = a

fordl a € G.
(iii) For each a € G thereexistsan elementa—! € G, caled the inverse of a, such that
axa l=alxa=1.

A group G isabelian (or commutative) if, furthermore,
(iv) axb=bxaforadla,bedG.

Note that multiplicative group notation has been used for the group operation. If the
group operation is addition, then the group is said to be an additive group, the identity ele-
ment is denoted by 0, and the inverse of a is denoted —a.

Henceforth, unless otherwise stated, the symbol « will be omitted and the group oper-
ation will simply be denoted by juxtaposition.

2.163 Definition A group G isfiniteif |G| isfinite. The number of elementsin afinite groupis
caleditsorder.

2.164 Example Theset of integersZ with the operation of addition formsagroup. Theidentity
element is 0 and the inverse of an integer a isthe integer —a. O

2.165 Example The set Z,,, with the operation of addition modulo n, forms a group of order
n. The set Z,, with the operation of multiplication modulo n is not a group, since not all
elementshave multiplicativeinverses. However, theset Z;, (see Definition 2.124) isagroup
of order ¢(n) under the operation of multiplication modulo n, with identity element 1. O
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2.166

2.167

2.168

2.169

2.170

2.171

2.172

2.173

2.174

Definition A non-empty subset H of agroup G isasubgroup of G if H isitself agroup
with respect to the operation of G. If H isasubgroup of G and H # G, then H iscdled a
proper subgroup of G.

Definition A group G iscyclicif thereisan element o € G suchthat for eachb € G there
isaninteger s with b = o*. Such an element « is called a generator of G.

Fact If Gisagroupanda € G, then the set of all powersof a forms a cyclic subgroup of
G, called the subgroup generated by a, and denoted by (a).

Definition Let G beagroupand a € G. The order of o isdefined to be the least positive
integer ¢ such that a® = 1, provided that such an integer exists. If such at does not exist,
then the order of a is defined to be co.

Fact Let G beagroup, and let a € G be an element of finite order ¢. Then |(a)|, the size
of the subgroup generated by a, isequal to t.

Fact (Lagrange'stheorem)If Gisafinitegroupand H isasubgroupof G, then |H| divides
|G|. Hence, if a € G, the order of a divides|G|.

Fact Every subgroup of acyclic group G isaso cyclic. Infact, if G isacyclic group of
order n, then for each positive divisor d of n, G contains exactly one subgroup of order d.

Fact Let G beagroup.

(i) If the order of a € G ist, then the order of a* ist/ ged(t, k).
(ii) If Gisacyclic group of order n and d|n, then G has exactly ¢(d) elements of order
d. In particular, G has ¢(n) generators.

Example Consider themultiplicativegroupZi, = {1, 2, ..., 18} of order 18. Thegroup

*

iscyclic (Fact 2.132(i)), and a generator is e = 2. The subgroups of Z;,, and their gener-
ators, arelisted in Table 2.7. |

| Subgroup | Generators | Order |
I T 1
{1,18} 18
{1,7,11} 7,11
{1,7,8,11,12,18} 8,12
{1,4,5,6,7,9,11,16,17} 4,5,6,9,16,17
{1,2,3,...,18} 2,3,10,13, 14, 15

© O W N

—
o]

Table 2.7: The subgroups of Zig.

2.5.2 Rings

2.175

Definition Aring (R, +, x) consistsof aset R with two binary operations arbitrarily de-
noted + (addition) and x (multiplication) on R, satisfying the following axioms.

(i) (R,+) isanabelian group with identity denoted 0.
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(i) Theoperation x isassociative. Thatis, a x (b x ¢) = (a x b) x cfordl a,b,c € R.

(iii) Thereisamultiplicativeidentity denoted 1, with1 # 0,suchthat 1 xa =ax1=a
fordl a € R.

(iv) Theoperation x isdistributiveover +. Thatis,a x (b+¢) = (a x b) + (a x ¢) and
(b+c)xa=(bxa)+ (cxa)fordla,b,cecR.

Theringisacommutativeringif a x b =b x aforal a,b € R.

2.176 Example Theset of integers Z with the usual operations of addition and multiplicationis
a commutative ring. O

2.177 Example The set Z,, with addition and multiplication performed modulo n is a commu-
tativering. O

2.178 Definition Anelement a of aring R iscalled aunit or an invertible element if thereisan
elementb € R suchthata x b = 1.

2.179 Fact The set of unitsin aring R forms a group under multiplication, called the group of
unitsof R.

2.180 Example Thegroup of unitsof thering Z,, isZ,, (see Definition 2.124). a

2.5.3 Fields

2.181 Definition A field isacommutative ring in which all non-zero elements have multiplica
tiveinverses.

m times
——

2.182 Definition Thecharacteristicof afieldisOif 1 + 1+ ---+ 1isnever equa to 0 for any
m > 1. Otherwise, the characteristic of the field is the least positive integer m such that
>, 1equaso.

2.183 Example The set of integers under the usual operations of addition and multiplicationis
not afield, sincetheonly non-zerointegerswith multiplicativeinversesare1 and —1. How-
ever, the rational numbers Q, the real numbers R, and the complex numbers C form fields
of characteristic 0 under the usual operations. O

2.184 Fact Z, isafield (under the usual operations of addition and multiplication modulo n) if
and only if n isaprime number. If n is prime, then Z,, has characteristic n.

2.185 Fact If the characteristic m of afield isnot 0, then m isaprime number.

2.186 Definition A subset F' of afield F isasubfield of E' if F isitself afield with respect to

the operations of E. If thisisthe case, F issaid to be an extension field of F'.
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2.5.4 Polynomial rings

2.187

2.188

2.189

2.190

2.191

2.192

Definition If R isacommutativering, then a polynomial in the indeterminate x over the
ring R is an expression of the form

fl@)=apz™ +---+ asz? + ayw + ag

where each a; € Randn > 0. The element a; is caled the coefficient of z% in f(x).
The largest integer m for which a,,, # 0 is caled the degree of f(z), denoted deg f(z);
an, is caled the leading coefficient of f(z). If f(z) = ag (a constant polynomial) and
ap # 0, then f(x) hasdegree 0. If all the coefficientsof f(z) are0, then f(x) iscalled the
zero polynomial and its degree, for mathematical convenience, is defined to be —oco. The
polynomia f(z) issaid to be monic if itsleading coefficientis equal to 1.

Definition If R isacommutativering, the polynomial ring R[z] isthering formed by the
set of al polynomialsin the indeterminate = having coefficients from R. The two opera-
tions are the standard polynomial addition and multiplication, with coefficient arithmetic
performedin thering R.

Example (polynomial ring) Let f(z) = 2% + 2 + 1 and g(z) = 2 + = be elements of
the polynomial ring Zs[x]. Working in Zs|x],
flx) +g(x) =2 +2°+1
and
flx)-glx) =2 +2* +2° + . O

For the remainder of thissection, F' will denotean arbitrary field. The polynomial ring
F[z] hasmany propertiesin common with theintegers (more precisely, F'[z] and Z are both
Euclidean domains, however, this generalization will not be pursued here). These similar-
ities are investigated further.

Definition Let f(x) € F[z] beapolynomial of degreeat least 1. Then f(x) issaid to be
irreducible over F if it cannot be written as the product of two polynomiasin F[z], each
of positive degree.

Definition (division algorithm for polynomials) If g(x), h(z) € F[z], with h(z) # 0,
then ordinary polynomial long division of g(z) by h(x) yieldspolynomialsq(z) andr(z) €
F[z] such that

g9(x) = q(z)h(z) + r(x), wheredegr(z) < deg h(x).

Moreover, ¢(x) and r(x) are unique. The polynomial ¢(x) is called the quotient, while
r(z) iscalled theremainder. The remainder of thedivisionissometimesdenoted g(z) mod
h(z), and the quotient is sometimes denoted g(x) div h(z) (cf. Definition 2.82).

Example (polynomial division) Consider thepolynomiasg(z) = 26+2°+23+22+2+1
and h(z) = z* + 23 + 1in Zy[x]. Polynomial long division of g(z) by h(z) yields

g(z) = 2°h(z) + (2 +z + 1).
Hence g(x) mod h(x) = 2® + = + 1 and g(z) div h(z) = z2. O
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2.193

2.194

2.195

2.196

2.197

2.198

Definition If g(z), h(z) € F|z] then h(z) divides g(z), written h(z)|g(z), if g(z) mod
h(z) = 0.

Let f(z) be afixed polynomia in F[z]. Aswith the integers (Definition 2.110), one
can define congruences of polynomialsin F'[z] based on division by f(z).
Definition If g(z), h(z) € F[z], then g(x) is said to be congruent to h(x) modulo f(z)
if f(x) dividesg(z) — h(z). Thisisdenoted by g(x) = h(z) (mod f(z)).

Fact (properties of congruences) For al g(x), h(z), g1(z), h1(z), s(x) € F[z], thefol-
lowing aretrue.
(i) g(x) = h(z) (mod f(x)) if and only if g(x) and h(z) leave the same remainder
upon division by f(z).
(i) (reflexivity) g(z) = g(z)
(iii) (symmetry) If g(z) = h(x
(iv) (trangtivity) If g(z) = h
9(z) = s(z) (mod f(x))
(V) If g(z) = g1(z) (mod f(x)) and h(z) = hi(z) (mod f(zx)), then g(x) + h(z) =
g91(z) + hi(z) (mod f(z)) and g(x)h(x) = g1(x)h1(z) (mod f(z)).

Let f(z) beafixed polynomia in F[z]. The equivalenceclass of apolynomial g(z) €
F[z] isthe set of all polynomialsin F[x] congruent to g(x) modulo f(z). From properties
(ii), (iii), and (iv) above, it can be seen that the relation of congruence modulo f(z) par-
titions F'[z] into equivalence classes. If g(x) € Flx], then long division by f(z) yields
unique polynomials ¢(x), r(z) € Flz] suchthat g(z) = q(x)f(z) + r(x), wheredeg r(z)
< deg f(z). Hence every polynomial g(z) is congruent modulo f(x) to a unique polyno-
mial of degree lessthan deg f(z). The polynomia r(x) will be used as representative of
the equivalence class of polynomials containing g(z).

(mod f(z)).
) (mod f(x)),then h(z) = g(x) (mod f(x)).
(z) (mod f(z))and h(z) = s(z) (mod f(z)), then

Definition F[z]/(f(x)) denotes the set of (equivalence classes of) polynomialsin F|x]
of degreelessthann = deg f(z). Additionand multiplication are performed modulo f (z).

Fact F[z]/(f(z)) isacommutativering.

Fact If f(x) isirreducibleover F, then F[z]|/(f(x)) isafield.

2.5.5 Vector spaces

2.199

Definition A vector space V over afield F is an abelian group (V, +), together with a
multiplication operatione : F' x V' — V (usually denoted by juxtaposition) such that for
al a,b e Fandv,w € V, the following axioms are satisfied.
() a(v+w) =av+ aw.

(i) (a4 b)v =av+ bo.

(iii) (ab)v = a(bv).

(iv) 1v = .
Theelementsof V arecalled vectors, whilethe elementsof F' arecalled scalars. Thegroup
operation + is called vector addition, while the multiplication operation is called scalar
multiplication.
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2.200

2.201

2.202

2.203

2.204

2.205

2.206

2.207

Definition LetV beavector spaceover afield F'. A subspaceof V' isan additive subgroup
U of V whichis closed under scalar multiplication, i.e., av € U fordla € Fandv € U.

Fact A subspace of avector spaceis also a vector space.

Definition LetS = {vy,vs,... ,v,} beafinite subset of avector space V" over afield F'.
(i) A linear combination of S isan expression of the form ayv; + asve + -« - + apvy,
whereeacha; € F.

(i) Thespanof S, denoted (.S), isthe set of all linear combinationsof .S. The span of S
isasubspace of V.

(iii) If U isasubspaceof V, then Sissaidto span U if (S) = U.

(iv) The set S islinearly dependent over F' if there exist scalars ay, as, . .. , ay, not al
zero, such that a1v1 + asve + - -+ + a,v, = 0. If no such scalars exist, then S is
linearly independent over F'.

(V) A linearly independent set of vectorsthat spansV iscaled abasisfor V.

Fact Let V beavector space.
(i) If V hasafinite spanning set, then it has abasis.
(if) If V hasabasis, thenin fact all bases have the same number of elements.

Definition If avector space V' hasabasis, then the number of elementsinabasisiscalled
the dimension of V', denoted dim V.

Example If Fisany field, then the n-fold Cartesianproduct V = F x F' x --- x F'isa
vector space over F' of dimension n. The standard basisfor V is{ey, e, ... , e, }, where
e; isavector with a1 in the it coordinate and 0's elsewhere. O

Definition Let FE be an extension field of F. Then E can be viewed as a vector space
over the subfield F', where vector addition and scalar multiplication are simply the field
operations of addition and multiplicationin E. The dimension of thisvector spaceis called
the degree of E over F, and denoted by [E : F]. If thisdegreeisfinite, then E iscalled a
finite extension of F'.

Fact Let F, E, and L befields. If L isafinite extension of E and E is afinite extension
of F, then L isaso afinite extension of F' and

[L:F)=|[L:E]E:F|.

2.6 Finite fields

2.6.1 Basic properties

2.208

Definition A finitefieldisafield F' which containsafinite number of elements. Theorder
of F isthe number of elementsin F'.
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2.209

2.210

2.211

2.212

2.213

2.214

2.215

Fact (existence and uniqueness of finite fields)

(i) If Fisafinitefield, then F' containsp™ elementsfor someprimep andinteger m > 1.
(if) For every prime power order p™, thereisaunique (up to isomorphism) finitefield of
order p™. Thisfield is denoted by F,=, or sometimes by GF(p™).

Informally speaking, two fields are isomorphic if they are structurally the same, al-
though the representation of their field elements may be different. Notethat if p isaprime
then Z,, is afield, and hence every field of order p isisomorphic to Z,. Unless otherwise
stated, the finite field I, will henceforth be identified with Z,,.

Fact If F, isafinitefield of order ¢ = p™, p aprime, then the characteristic of F,, is p.
Moreover, F, contains a copy of Z, asasubfield. HenceF, can be viewed as an extension
field of Z,, of degree m.

Fact (subfieldsof afinitefield) Let I, beafinitefield of order ¢ = p™. Then every subfield
of F, has order p™, for somen that is a positive divisor of m. Conversely, if n isapositive
divisor of m, then there is exactly one subfield of F, of order p™; an element a € F, isin
the subfield F,, if and only if a?" = a.

Definition Thenon-zero elementsof I, formagroup under multiplication called the mul-
tiplicative group of IF,;, denoted by F;.

Fact T, isacyclic group of order ¢ — 1. Hencea? = afordla € F,.

Definition A generator of the cyclic group T, is called a primitive element or generator
of .

Fact If a,b € Fy, afinitefield of characteristic p, then

(@+b)? =a? + 0 foralt>0.

2.6.2 The Euclidean algorithm for polynomials

2.216

2.217

Let Z,, be the finite field of order p. The theory of greatest common divisors and the Eu-
clidean algorithm for integers carries over in a straightforward manner to the polynomial
ring Z,[z] (and more generally to the polynomial ring F'[z], where F is any field).

Definition Letg(x),h(z) € Zp[z], wherenot both are 0. Then the greatest common divi-
sor of g(x) and h(z), denoted ged (g(x), h(z)), isthe monic polynomial of greatest degree
in Zy[z] which divides both g(z) and h(z). By definition, ged(0,0) = 0.

Fact Z,[x] is aunique factorization domain. That is, every non-zero polynomial f(x) €
Z,[z] has afactorization

f@) = afi(x)” fa()® - fio(2),

wherethe f;(z) are distinct monic irreducible polynomiasin Z, [z], the e; are positivein-
tegers, and a € Z,,. Furthermore, thefactorization isunique up to rearrangement of factors.

Thefollowing is the polynomial version of the Euclidean algorithm (cf. Algorithm 2.104).
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2.218

2.219

2.220

2.221

2.222

2.223

Algorithm Euclidean algorithm for Z,, [x]
INPUT: two polynomids g(z), h(z) € Z,[z].
OUTPUT: the greatest common divisor of g(x) and h(z).
1. While h(z) # 0 do thefollowing:
1.1 Setr(z)«g(z) mod h(x), g(z)«h(z), h(z)+r(z).
2. Return(g(x)).

Definition A Z,-operation means either an addition, subtraction, multiplication, inver-
sion, or divisionin Z,,.

Fact Supposethatdeg g(x) < manddeg h(z) < m. Then Algorithm 2.218 hasarunning
time of O(m?) Z,-operations, or equivaently, O(m?(Ig p)?) bit operations.

Aswith the case of the integers (cf. Algorithm 2.107), the Euclidean algorithm can be
extended so that it also yields two polynomials s(x) and ¢(x) satisfying

s(z)g(z) + t(x)h(z) = ged(g(z), h(z)).

Algorithm Extended Euclidean algorithm for Z,, [x]
INPUT: two polynomials g(z), h(x) € Zp|z].
OUTPUT: d(z) = ged(g(z), h(x)) and polynomias s(z), t(xz) € Zp[x| which satisfy
s(z)g(z) + t(z)h(z) = d(z).
1. If h(z) = 0 then set d(x)«g(x), s(x)<+1, t(x)<«0, and return(d(z),s(x) t(z)).
2. Set sy(x)«1, s1(z)<0, ta(z)«0, t1(x)«1.
3. While h(z) # 0 do the following:
3.1 g(z)+g(z) div h(z), r(z)+g(z) — h(x)q(z).
3.2 s(z)«sa(x) — q(z)s1(x), t(z)+t2(x) — g(x)t1(x).
3.3 g(x)«h(z), h(z)+r(x).
34 so(x)s1(x), s1(x)s(x), to(z)t1(x), and t1(x)+t(z).
4. Setd(z)«g(z), s(x)+s2(x), t(z)+ta(x).
5. Return(d(z),s(z),t(x)).

Fact (runningtime of Algorithm 2.221)
(i) Thepolynomiass(z) and¢(x) given by Algorithm 2.221 have small degree; that is,
they satisfy deg s(z) < degh(z) anddegt(x) < degg(z).
(i) Supposethat deg g(z) < manddeg h(z) < m. Then Algorithm 2.221 hasarunning
time of O(m?) Z,-operations, or equivalently, O(m?(1g p)?) bit operations.

Example (extended Euclidean algorithmfor polynomials) The following are the steps of
Algorithm 2.221 with inputs g(z) = 2'% + 2% 4+ 2® + 2% + 2° + 2* + 1 and h(z) =
22+ 25 + 2% + 23 + 22 + 1inZy[x].
Initialization

s2(x)+1, s1(x)«0, ta(x)«0, t1(x)«1.
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Iteration 1
q@)z+1, r(z)a® + 27 + 2% + 2% + 2,
s(z)«1, t(x)+z+1,
g@)a® +2b + 2% + 2 + 22 + 1, h(z)+a2® + 27 + 2% + 2% + 1,
s2(x)+=0, s1(x)+1, ta(x)¢1, t1(z)x + 1.
Iteration 2
q@)z+1, r(x)a’+ 22>+ +1,
s(z)+z + 1, t(z)+2?,
g@)—a® + 2"+ 2 + 22 + 1, h(z)a® + 22+ 2+ 1,
so(x)41, s1(z)x + 1, to(x)—x + 1, t1(z)+22.
Iteration 3
gq@)d+ 22+ +1, r@)«a®+x+1,
s(x)zt, t(x)a® +at+ 23+ 22 + 2+ 1,
g@)a® + 2> +x+ 1, h(z)+z® +z+1,
so(z)—x + 1, s1(x)2a?, to(x)2?, t1(z)a + 2 + 23 + 22 + o + 1.
Iteration 4
q(x)+z% + 1, r(z)+0,
s(x)ezb + 2t +z+1, t(x)ea" + 28 + 22 + x4+ 1,
g(z)+a® + x + 1, h(x)«0,
so(z)z, s1(x)a8 + 2 + 2+ 1,
to(z)aS +at+ 2+ 22+ +1, ti(x)ez" + 28+ 22+ 2+ 1.

Hence ged(g(x), h(z)) = 2* + 2 + 1 and
(a)g(z) + (z° + 2t + 2 + 2® + 2 + Dh(z) = 2® + 2 + 1. 0

2.6.3 Arithmetic of polynomials

2.224

2.225

A commonly used representation for the elements of afinitefield F,, whereg = p™ and p
isaprime, isapolynomial basisrepresentation. If m = 1, thenF, isjust Z,, and arithmetic
is performed modulo p. Since these operations have aready been studied in Section 2.4.2,
it is henceforth assumed that . > 2. The representation is based on Fact 2.198.

Fact Let f(z) € Zp[z] beanirreducible polynomial of degree m. Then Z,[z]/(f(z)) is
afinitefield of order p". Addition and multiplication of polynomialsis performed modulo

f(=).

The following fact assures that al finite fields can be represented in this manner.

Fact For eachm > 1, there exists a monic irreducible polynomial of degree m over Z,.
Hence, every finite field has a polynomial basis representation.

An efficient algorithm for finding irreducible polynomial sover finitefieldsis presented
in §4.5.1. Tables 4.6 and 4.7 list some irreducible polynomials over the finite field Z.

Henceforth, the elements of the finite field I, will be represented by polynomialsin
Z,[z] of degree < m. If g(z), h(z) € F,m=, then addition is the usua addition of polyno-
miasin Z,[xz]. The product g(x)h(z) can beformed by first multiplying g(z) and h(z) as
polynomials by the ordinary method, and then taking the remainder after polynomial divi-
sion by f(z). Multiplicetive inversesin IF,m can be computed by using the extended Eu-
clidean algorithm for the polynomial ring Z,, [x].
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2.226 Algorithm Computing multiplicative inverses in Fym

INPUT: anon-zero polynomial g(x) € Fym. (Theelementsof thefield F,,~ arerepresented
asZy|z]/(f(z)), where f(z) € Z,|z] isan irreducible polynomial of degree m over Z,.)
OUTPUT: g(z) * € Fym.

1. Usethe extended Euclidean algorithm for polynomials (Algorithm 2.221) to find two
polynomials s(z) and t(z) € Zp[z] such that s(x)g(x) + t(z) f(z) = 1.
2. Return(s(z)).

Exponentiationin F,,. can be done efficiently by the repeated square-and-multiply al-
gorithm (cf. Algorithm 2.143).

2.227 Algorithm Repeated square-and-multiply algorithm for exponentiation in F,m

INPUT: g(z) € Fpm and aninteger 0 < k < p™ — 1 whose binary representation is
k=", k2" (Thefield F,m isrepresented as Z, [z]/(f(x)), where f(z) € Zp[z] isan
irreducible polynomial of degree m over Z,,.)
OUTPUT: g(x)* mod f(z).
1. Sets(x)«1. If k = 0 thenreturn(s(x)).
2. Set G(x)+g(z).
3. If kg = 1then set s(z)«g(x).
4. For i from 1 to ¢ do the following:
4.1 Set G(z)+G(x)? mod f(z).
4.2 If k; = 1then set s(z)«G(z) - s(x) mod f(x).
5. Return(s(z)).

The number of Z,-operations for the basic operations in Fp- is summarized in Tea-

ble2.8.
Operation ‘ Number of Z,-operations
Addition g(z) + h(z) O(m)
Subtraction g(z) — h(z) O(m)
Multiplication g(z) - h(z) O(m?)
Inversion g(z)~ ! O(m?)
Exponentiation  g(z)*, k < p™ O((1gp)m?)

Table 2.8: Complexity of basic operationsin Fym .

Insomeapplications(cf. §4.5.3), it may be preferableto useaprimitive polynomial to define
afinitefield.

2.228 Definition An irreducible polynomial f(x) € Z,[x] of degree m is called a primitive
polynomial if x isagenerator of F.., the multiplicative group of all the non-zero elements

inFypm = Z,[2]/(f (). ’

2.229 Fact Theirreducible polynomial f(z) € Zp[z] of degree m is a primitive polynomial if
and only if f(x) dividesz* — 1 for k = p™ — 1 and for no smaller positive integer .
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2.230 Fact For eachm > 1, there existsamonic primitive polynomial of degree m over Z,. In

fact, there are precisely ¢(p™ — 1)/m such polynomials.

2.231 Example (thefinitefield F,. of order 16) It can be verified (Algorithm 4.69) that the poly-

nomia f(z) = z* + z + 1 isirreducible over Z,. Hence the finite field F,« can be repre-
sented as the set of all polynomials over I, of degreelessthan 4. That is,
Foi = {azz® + as2® + a17 + ag | a; € {0,1}}.
For convenience, the polynomial azz® + asx? + a1z + ag is represented by the vector
(a3a2a1a0) of Iength 4, and
Fou = {(a3a2a1a0) | a; € {0, 1}}
The following are some examples of field arithmetic.
(i) Field elements are simply added componentwise: for example, (1011) + (1001) =
(0010).
(i) Tomultiply thefield elements (1101) and (1001), multiply them as polynomialsand
then take the remainder when this product is divided by f(x):
(@ +2?2+1)-(2®+1) = 242> +22+1
= 23 4+2°4+2+1 (mod f(x)).
Hence (1101) - (1001) = (1111).
(iii) Themultiplicativeidentity of Fo4 is (0001).
(iv) Theinverseof (1011)is(0101). To verify this, observe that
(B +z+1)-2°+1) = d+2°4+z+1
1 (mod f(x)),
whence (1011) - (0101) = (0001).
f(z) isaprimitive polynomial, or, equivalently, the field element = = (0010) isagenera-
tor of F5.. Thismay be checked by verifying that al the non-zero elementsin Fo. can be
obtained as a powers of z. The computations are summarized in Table 2.9. O

A list of some primitive polynomials over finite fields of characteristic twoisgivenin
Table 4.8.

2.7 Notes and further references

§2.1

§2.2

A classic introduction to probability theory isthe first volume of the book by Feller [392].
The material on the birthday problem (§2.1.5) is summarized from Nishimura and Sibuya
[931]. See also Girault, Cohen, and Campana [460]. The materia on random mappings
(8§2.1.6) is summarized from the excellent article by Flgjolet and Odlyzko [413].

The concept of entropy wasintroduced in the seminal paper of Shannon[1120]. Theseideas
werethen applied to develop amathematical theory of secrecy systemsby Shannon [1121].
Hellman [548] extended the Shannon theory approach to cryptography, and this work was
further generalized by Beauchemin and Brassard [80]. For an introduction to information
theory seethe booksby Welsh [1235] and Goldieand Pinch [464]. For more compl etetreat-
ments, consult Blahut [144] and McEliece [829].
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| i | z'mod z* + x + 1 | vector notation |
0 1 (0001)
1 x (0010)
2 z? (0100)
3 z3 (1000)
4 Tz+1 (0011)
5 2tz (0110)
6 z® + 2? (1100)
7 2+ +1 (1011)
8 z?+1 (0101)
9 4z (1010)
10 ?+z+1 (0111)
11 3+ 2+ (1110)
12| 23 +22 4241 (1111)
13 ¥+ 2% +1 (1101)
14 241 (1001)
Table 2.9: The powers of z modulo f(z) = z* + z + 1.
§2.3
Among the many introductory-level books on algorithms are those of Cormen, Leiserson,
and Rivest [282], Rawlins [1030], and Sedgewick [1105]. A recent book on complexity
theory is Papadimitriou [963]. Example 2.58 isfrom Graham, Knuth, and Patashnik [520,
p.441]. For an extensive list of NP-complete problems, see Garey and Johnson [441].
§2.4
Two introductory-level books in number theory are Giblin [449] and Rosen [1069]. Good
number theory books at a more advanced level include Koblitz [697], Hardy and Wright
[540], Ireland and Rosen [572], and Niven and Zuckerman [932]. The most comprehensive
works on the design and analysis of algorithms, including number theoretic algorithms, are
the first two volumes of Knuth [691, 692]. Two more recent books exclusively devoted to
this subject are Bach and Shallit [70] and Cohen [263]. Facts 2.96 and 2.102 are due to
Rosser and Schoenfeld [1070]. Shallit [1108] describes and analyzes three algorithms for
computing the Jacobi symbol.
§2.5
Among standard referencesin abstract algebraare the books by Herstein [556] and Hunger-
ford [565].
§2.6

An excellent introduction to finite fields is provided in McEliece [830]. An encyclopedic
treatment of the theory and applications of finite fields is given by Lidl and Niederreitter
[764]. Two books which discuss various methods of representing the elements of afinite
field are those of Jungnickel [646] and Menezes et al. [841].
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3.1 Introduction and overview

The security of many public-key cryptosystems relies on the apparent intractability of the
computational problems studied in this chapter. In a cryptographic setting, it is prudent to
makethe assumption that theadversary isvery powerful. Thus, informally speaking, acom-
putational problem is said to be easy or tractableif it can be solved in (expected)! polyno-
mial time, at least for anon-negligiblefraction of all possibleinputs. In other words, if there
is an algorithm which can solve a non-negligible fraction of all instances of a problem in
polynomial time, then any cryptosystem whose security is based on that problem must be
considered insecure.

The computational problems studied in this chapter are summarized in Table 3.1. The
true computational complexities of these problems are not known. That isto say, they are
widely believed to beintractable,? although no proof of thisis known. Generally, the only
lower bounds known on the resources required to solve these problems arethetrivia linear
bounds, which do not provide any evidence of their intractability. It is, therefore, of inter-
est to study their relative difficulties. For this reason, various techniques of reducing one

LFor simplicity, the remainder of the chapter shall generally not distinguish between deterministic polynomial-
time algorithms and randomized algorithms (see §2.3.4) whose expected running timeis polynomial.
2More precisely, these problems are intractable if the problem parameters are carefully chosen.

87



88 Ch. 3 Number-Theoretic Reference Problems
| Problem || Description |
FACTORING Integer factorization problem: given a positive integer n, find
its prime factorization; that is, writen = pi*ps? ... p;* where

the p; are pairwise distinct primesand each e; > 1.

RSAP RSA problem (also known as RSA inversion): given a positive
integer n that isa product of two distinct odd primesp and ¢, a
positive integer e such that ged(e, (p — 1)(¢ — 1)) = 1,and an
integer ¢, find an integer m such that m¢ = ¢ (mod n).

QRP Quadratic residuosity problem: given an odd composite inte-
ger n and an integer a having Jacobi symbol (%) = 1, decide
whether or not a is a quadratic residue modulo n.

SQROOT Sguarerootsmodulon: givenacompositeinteger nanda € Q.
(the set of quadratic residues modulo n), find a square root of a
modulo n; that is, an integer = such that 22 = a (mod n).

DLP Discrete logarithm problem: given a prime p, a generator « of
Z,,and an element 3 € Z,, find theinteger z, 0 < = < p — 2,
suchthat o® = 8 (mod p).

GDLP Generalized discrete logarithm problem: given a finite cyclic
group G of order n, agenerator « of GG, and an element 3 € G,
find theinteger x, 0 < x < n — 1, such that o = 3.

DHP Diffie-Hellman problem: given a prime p, a generator o of Z,
and elements o mod p and a® mod p, find a*® mod p.

GDHP Generalized Diffie-Hellman problem: given afinitecyclic group
G, agenerator o of G, and group elements o and a?, find a.%.

SUBSET-SUM || Subset sum problem: given a set of positive integers
{ai1,as,...,a,} and apositiveinteger s, determine whether or
not there is a subset of the a; that sumsto s.

Table 3.1: Some computational problems of cryptographic relevance.
computational problem to another have been devised and studied intheliterature. Thesere-
ductions provide ameans for converting any agorithm that solvesthe second problem into
an algorithm for solving the first problem. The following intuitive notion of reducibility
(cf. §2.3.3) isused in this chapter.

3.1 Definition Let A and B betwo computational problems. A is said to polytime reduce to
B, written A <p B, if thereis an algorithm that solves A which uses, as a subroutine, a
hypothetical algorithm for solving B, and which runs in polynomial time if the algorithm
for B does.

Informally speaking, if A polytime reducesto B, then B is at least as difficult as A;
equivaently, A is no harder than B. Consequently, if A is a well-studied computational
problemthat iswidely believed to beintractable, then provingthat A <p B providesstrong
evidence of the intractability of problem B.

3.2 Definition Let A and B be two computational problems. If A <p Band B <p A, then

A and B are said to be computationally equivalent, written A =p B.

3In the literature, the hypothetical polynomial-time subroutine for B is sometimes called an oracle for B.
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Informally speaking, if A =p B then A and B are either both tractable or both in-
tractable, as the case may be.

Chapter outline

The remainder of the chapter is organized as follows. Algorithmsfor the integer factoriza-
tion problem are studied in §3.2. Two problems related to factoring, the RSA problem and
the quadratic residuosity problem, are briefly considered in §3.3 and §3.4. Efficient algo-
rithms for computing square rootsin Z,,, p a prime, are presented in §3.5, and the equiva-
lence of the problems of finding square roots modulo a composite integer n and factoring
n is established. Algorithms for the discrete logarithm problem are studied in §3.6, and
the related Diffie-Hellman problem is briefly considered in §3.7. The relation between the
problems of factoring a composite integer n and computing discrete logarithmsin (cyclic
subgroups of) the group Z,, is investigated in §3.8. The tasks of finding partial solutions
to the discrete logarithm problem, the RSA problem, and the problem of computing square
roots modulo a composite integer n are the topics of §3.9. The L3-lattice basis reduction
algorithm is presented in §3.10, along with algorithms for the subset sum problem and for
simultaneous diophantine approximation. Berlekamp's Q-matrix algorithm for factoring
polynomialsis presented in §3.11. Finaly, §3.12 provides references and further chapter
notes.

3.2 The integer factorization problem

3.3

3.4

3.5

3.6

The security of many cryptographic techniques depends upon the intractability of the in-
teger factorization problem. A partial list of such protocols includes the RSA public-key
encryption scheme (§8.2), the RSA signature scheme (§11.3.1), and the Rabin public-key
encryption scheme (§8.3). This section summarizes the current knowledge on algorithms
for the integer factorization problem.

Definition The integer factorization problem (FACTORING) is the following: given a
positive integer n, find its prime factorization; that is, write n = p{'p5? - - - p;* wherethe
p; are pairwise distinct primesand each e; > 1.

Remark (primality testing vs. factoring) The problem of deciding whether an integer is
compositeor prime seemsto be, in general, much easier than the factoring problem. Hence,
before attempting to factor an integer, the integer should be tested to make sure that it is
indeed composite. Primality tests are amain topic of Chapter 4.

Remark (splitting vs. factoring) A non-trivial factorization of n is a factorization of the
formn = abwherel < a < nand1 < b < n; a and b are said to be non-trivial factors
of n. Here a and b are not necessarily prime. To solve the integer factorization problem, it
sufficesto study algorithmsthat split n, that is, find anon-trivial factorizationn = ab. Once
found, thefactorsa and b can betested for primality. Thealgorithm for splitting integerscan
then be recursively applied to a and/or b, if either isfound to be composite. In this manner,
the prime factorization of n can be obtained.

Note (testingfor perfect powers) If n > 2, it can be efficiently checked asfollowswhether
or not n is a perfect power, i.e., n = z* for someintegersz > 2, k > 2. For each prime
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p < lgn, aninteger approximation z of n!/? iscomputed. Thiscan be done by performing
abinary search for  satisfyingn. = z? intheinterval [2, 21'8™/P1+1] Theentire procedure
takes O((lg* n) Iglg g n) bit operations. For the remainder of this section, it will always
be assumed that n isnot aperfect power. It followsthat if » iscomposite, then n has at least
two distinct prime factors.

Some factoring al gorithms are tailored to perform better when theinteger n being fac-
tored is of a specia form; these are called special-purpose factoring algorithms. The run-
ning times of such algorithmstypically depend on certain propertiesof thefactorsof n. Ex-
amples of special-purposefactoring algorithmsincludetrial division (§3.2.1), Pollard’srho
algorithm (§3.2.2), Pollard’sp — 1 algorithm (§3.2.3), the elliptic curve algorithm (§3.2.4),
and the special number field sieve (§3.2.7). In contrast, the running times of the so-called
general-purpose factoring algorithms depend solely on the size of n. Examples of general-
purpose factoring algorithms include the quadratic sieve (§3.2.6) and the general number
field sieve (§3.2.7).

Whenever applicable, special-purposeal gorithms should be employed asthey will gen-
erally be more efficient. A reasonable overall strategy is to attempt to find small factors
first, capitalize on any particular special forms an integer may have, and then, if al else
fails, bring out the general-purpose algorithms. As an example of a genera strategy, one
might consider the following.

1. Apply tria division by small primes|essthan some bound b .

2. Next, apply Pollard’s rho agorithm, hoping to find any small prime factors smaller
than some bound b5, where by > b;.

3. Apply theelliptic curve factoring algorithm, hoping to find any small factors smaller
than some bound b3, where b3 > bs.

4. Finaly, apply one of the more powerful general-purpose algorithms (quadratic sieve
or general number field sieve).

3.2.1 Trial division

3.7

Onceit isestablished that an integer n is composite, before expending vast amounts of time
with more powerful techniques, the first thing that should be attempted istrial division by
all “small” primes. Here, “small” isdetermined asafunction of the size of n. Asan extreme
caseg, trial division can be attempted by all primesupto “n. If thisis done, trial division
will completely factor n but the procedure will takeroughly “n divisionsin theworst case
when n isaproduct of two primes of the same size. In general, if the factorsfound at each
stage are tested for primality, then trial division to factor n completely takes O(p + lgn)
divisions, where p is the second-largest prime factor of n.

Fact 3.7 indicatesthat if trial division isused to factor arandomly chosen large integer
n, then the algorithm can be expected to find some small factors of n relatively quickly, and
expend alarge amount of timeto find the second largest prime factor of n.

Fact Let n be chosen uniformly at random from the interval [1, z].
@) If % < a < 1, then the probability that the largest prime factor of n is < z¢ is
approximately 1 + In . Thus, for example, the probability that » has a prime factor
> ‘risln2 ~ 0.69.
(i) The probability that the second-largest prime factor of n is < 2%-2!17 is about 1.
(iif) The expected total number of primefactorsof nislnlnz+O(1). (If n = [[ p§*, the
total number of primefactorsof nis> e;.)
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3.2.2 Pollard’s rho factoring algorithm

Pollard’srho agorithm is a special-purpose factoring algorithm for finding small factors of
acompositeinteger.

Let f : S — S be arandom function, where S is afinite set of cardinality n. Let
xo bearandom element of S, and consider the sequence zg, 1, 2, ... defined by ;1 =
f(z;) for i > 0. Since S isfinite, the sequence must eventually cycle, and consists of a
tail of expected length +/7n /8 followed by an endlessly repeating cycle of expected length
v/mn /8 (seeFact 2.37). A problemthat arisesin some cryptanalytic tasks, including integer
factorization (Algorithm 3.9) and the discrete logarithm problem (Algorithm 3.60), is of
finding distinct indices and j such that z; = x; (acollision isthen said to have occurred).

An obvious method for finding acollisionisto computeand store x; fori = 0,1, 2, ...
and look for duplicates. Theexpected number of inputsthat must betried beforeaduplicate
isdetectedis y/mn /2 (Fact 2.27). Thismethod requires O( n) memory and O( ‘n) time,
assuming the z; are stored in a hash table so that new entries can be added in constant time.

3.8 Note (Floyd'scycle-finding algorithm) The large storage requirements in the above tech-
nique for finding a collision can be eliminated by using Floyd's cycle-finding algorithm.
In this method, one starts with the pair (z1,z2), and iteratively computes (z;, z2;) from
the previous pair (z;_1, z2;—2), until z,,, = x4, for some m. If the tail of the sequence
has length A\ and the cycle has length p, then the first time that z,,, = x2,, iswhenm =
w(1+ [A/p]). Notethat A < m < X+ p, and consequently the expected running time of
thismethodisO( 'n).

Now, let p be a prime factor of a compositeinteger n. Pollard’s rho algorithm for fac-
toring n attempts to find duplicates in the sequence of integers xg, z1, x2, . .. defined by
xo = 2, zit1 = f(z;) = 22 + 1 mod p for i > 0. Floyd's cycle-finding algorithm is uti-
lized tofind z,,, and zs,,, suchthat z,,, = z,,, (mod p). Sincep dividesn butisunknown,
thisis done by computing the terms z; modulo n and testing if ged(z,, — z2m,n) > 1.
If dso ged(z,, — z2m,n) < m, then anon-trivia factor of n is obtained. (The situation
ged(zy, — Tam,n) = n occurs with negligible probability.)

3.9 Algorithm Pollard’s rho algorithm for factoring integers

INPUT: acompositeinteger n that is not a prime power.
OUTPUT: anon-trivial factor d of n.
1. Seta<+2, b<2.
2. Fori=1,2,... dothefollowing:
2.1 Compute a<—a? + 1 mod n, b<b? + 1 mod n, b<b?+ 1 mod n.
2.2 Computed = ged(a — b, n).
2.3 If 1 < d < n then return(d) and terminate with success.
2.4 If d = n then terminate the algorithm with failure (see Note 3.12).

3.10 Example (Pollard’s rho algorithm for finding a non-trivial factor of n = 455459) The
following table lists the values of variables a, b, and d at the end of each iteration of step 2
of Algorithm 3.9.
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3.11

3.12

[ o | & [ d]
5 2
26 | 2871
677 | 179685

2871 155260
44380 | 416250
179685 | 43670
121634 | 164403
155260 | 247944
44567 68343

-
&Hb—'b—'l—‘b—‘»—‘r—‘bi&‘

Hence two non-trivial factors of 455459 are 743 and 455459 /743 = 613. (|

Fact Assuming that the function f(z) = z® + 1 mod p behaves like a random function,
the expected timefor Pollard’srho algorithm to find afactor p of nisO( ‘p) modular mul-
tiplications. Thisimplies that the expected time to find a non-trivial factor of n isO(n'/4)
modular multiplications.

Note (options upon termination with failure) If Pollard’s rho algorithm terminates with
failure, one option isto try again with a different polynomial f having integer coefficients
instead of f(x) = x2 + 1. For example, the polynomial f(x) = 2? + ¢ may be used as
longasc # 0,—2.

3.2.3 Pollard’s p — 1 factoring algorithm

3.13

Pollard’sp — 1 factoring algorithm is a special-purpose factoring algorithm that can be used
to efficiently find any prime factors p of a composite integer n for which p — 1 is smooth
(see Definition 3.13) with respect to some relatively small bound B.

Definition Let B be a positive integer. An integer n is said to be B-smooth, or smooth
with respect to a bound B, if al its primefactorsare < B.

The idea behind Pollard’'s p — 1 agorithm is the following. Let B be a smoothness
bound. Let @ be the least common multiple of all powers of primes < B that are < n. If

¢' <n,thenllng <Inn,andsol < [{2]. Thus

Q — Hqunn/lan’

q<B

wherethe product isover al distinct primesq < B. If pisaprimefactor of n suchthatp—1
is B-smooth, then p — 1|@, and consequently for any a satisfying ged(a, p) = 1, Fermat’s
theorem (Fact 2.127) impliesthat a? = 1 (mod p). Henceif d = ged(a® — 1,n), then
p|d. Itispossiblethat d = n, in which case the algorithm fails; however, thisis unlikely to
occur if n has at least two large distinct prime factors.
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3.14 Algorithm Pollard’s p — 1 algorithm for factoring integers

INPUT: acompositeinteger n that is not a prime power.
OUTPUT: anon-trivial factor d of n.
1. Select a smoothnessbound B.
2. Select arandominteger a, 2 < a < n — 1, and compute d = ged(a,n). If d > 2
then return(d).
3. For each prime ¢ < B do thefollowing:

3.1 Compute] = |lnn

Ingd”
3.2 Compute a+a? mod n (using Algorithm 2.143).
4. Computed = ged(a — 1,n).
5. If d = 1 or d = n, then terminate the algorithm with failure. Otherwise, return(d).

3.15 Example (Pollard'sp — 1 algorithmfor finding a non-trivial factor of n = 19048567)

1. Select the smoothness bound B = 19.

2. Select theinteger a = 3 and compute ged(3,n) = 1.
3. Thefollowing tableliststheintermediate values of thevariables g, [, and a after each

iteration of step 3in Algorithm 3.14:
La [ ] o |

2 | 24 | 2293244
3 | 15 | 13555889
5 10 | 16937223
7 8 15214586
11| 6 9685355
13| 6 | 13271154
17| 5 11406961
19| 5 554506

4. Compute d = gcd(554506 — 1,n) = 5281.
5. Two non-trivial factorsof n arep = 5281 and ¢ = n/p = 3607 (thesefactorsarein

fact prime).
Noticethat p — 1 = 5280 =25 x 3 x 5 x 11,andg — 1 = 3606 = 2 x 3 x 601. That
is, p — 1is19-smooth, while g — 1 isnot 19-smooth. (|

3.16 Fact Letn be aninteger having a prime factor p such that p — 1 is B-smooth. The run-
ning time of Pollard’sp — 1 agorithm for finding the factor p isO(B Inn/ In B) modular
multiplications.

3.17 Note (improvements) The smoothnessbound B in Algorithm 3.14 is selected based on the
amount of time one is willing to spend on Pollard’'s p — 1 agorithm before moving on to
more general techniques. In practice, B may be between 10° and 108. If the algorithm
terminates with d = 1, then one might try searching over prime numbers q1, g2, --- ,q
larger than B by first computing a<—a?% mod n for 1 < ¢ < [, and then computing d =
ged(a — 1,n). Another variant is to start with a large bound B, and repeatedly execute
step 3 for afew primes ¢ followed by the gcd computation in step 4. There are numerous
other practical improvements of the algorithm (see page 125).
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3.2.4 Elliptic curve factoring

Thedetails of the dlliptic curve factoring algorithmare beyond the scope of thisbook; nev-
ertheless, arough outlinefollows. The success of Pollard’sp — 1 agorithm hingesonp — 1
being smooth for some prime divisor p of n; if no such p exists, then the algorithm fails.
Observethat p — 1 isthe order of the group Z,,. The élliptic curve factoring algorithmis a
generaization of Pollard’s p — 1 algorithm in the sense that the group Z; isreplaced by a
random elliptic curve group over Z,,. The order of such a group isroughly uniformly dis-
tributedintheinterval [p+1—2 p,p+1+42 ’p|. If theorder of thegroup chosenissmooth
with respect to some pre-selected bound, the elliptic curve algorithm will, with high prob-
ability, find a non-trivial factor of n. If the group order is not smooth, then the algorithm
will likely fail, but can be repeated with a different choice of dliptic curve group.

The dlliptic curve algorithm has an expected running time of Lp[%7 2] (see Exam-
ple 2.61 for definition of L,) to find afactor p of n. Since this running time depends on
the size of the prime factors of n, the algorithm tends to find small such factors first. The
elliptic curve algorithm is, therefore, classified as a special -purpose factoring algorithm. It
is currently the algorithm of choice for finding ¢-decimal digit prime factors, for ¢ < 40, of
very large composite integers.

In the hardest case, when n is a product of two primes of roughly the same size, the
expected running time of the elliptic curve algorithmis L,, [% , 1], which is the same as that
of the quadratic sieve (§3.2.6). However, the elliptic curve algorithm is not as efficient as
the quadratic sievein practice for such integers.

3.2.5 Random square factoring methods

3.18

3.19

3.20

The basic idea behind the random square family of methods is the following. Suppose x
and y are integers such that 22 = y? (mod n) but  # 4y (mod n). Then n divides
2?2 —y? = (z—y)(z+y) butn doesnot divideeither (z—y) or (xz+y). Hence, ged(z—y, n)
must be a non-trivial factor of n. Thisresult is summarized next.

Fact Letz,y,andn beintegers. If 22 = y? (mod n)butz # +y (mod n), thenged(x—
y,n) isanon-trivia factor of n.

The random square methods attempt to find integers = and y at random so that 22 = y?
(mod n). Then, asshownin Fact 3.19, with probability at least 1 itisthecasethat z # +y
(mod n), whence ged(xz — y, n) will yield anon-trivial factor of n.

Fact Let n be an odd composite integer that is divisible by & distinct odd primes. If a €
Z?, then the congruence z2 = a? (mod n) has exactly 2* solutions modulo n, two of
whicharez = aand z = —a.

Example Letn = 35. Thentherearefour solutionsto the congruencez? = 4 (mod 35),
namely = = 2, 12, 23, and 33. a

A common strategy employed by the random square algorithms for finding = and y at
random satisfying 2> = y? (mod n) isthefollowing. A set consisting of thefirst ¢ primes
S = {p1,p2,-..,p:}ischosen; S iscalledthefactor base. Proceedtofind pairsof integers
(ai, b;) satisfying

(i) a? =b; (mod n); and
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(ii) b; = H?le;”, e;j > 0; that is, b; is p;-smooth.
Next find a subset of the b;'s whose product is a perfect square. Knowing the factoriza-
tions of the b;'s, this is possible by selecting a subset of the b;’s such that the power of
each prime p; appearing in their product is even. For this purpose, only the parity of the
non-negative integer exponents e;; needs to be considered. Thus, to simplify matters, for

each i, associate the binary vector v; = (v;1, vie, . - . , viz) With the integer exponent vector
(61,1, €i2y .- ,eit) such that Vij = €45 mod2. Ift+1 pairs (ai, b/[) are obtained, then the
t-dimensional vectors vy, vs, . . ., vs11 Must be linearly dependent over Z,. That is, there

must exist anon-empty subset 7' C {1,2,... ,t+ 1} suchthat ), ;. v; = 0 over Zs, and
hence[ ], b: isaperfect square. Theset T’ can befound using ordinary linear algebraover
Zsy. Clearly, [];cr a? is also aperfect square. Thus setting = = [, a; and y to bethe
integer squareroot of [, b; yieldsapair of integers (z, y) satisfying z* = 3 (mod n).
If thispair also satisfiesz £ +y (mod n), then ged(z — y, n) yields a non-trivial factor
of n. Otherwise, some of the (a;, b;) pairs may be replaced by some new such pairs, and
the process is repeated. In practice, there will be several dependencies among the vectors
v1,v2,. .. ,v:41, @nd with high probability at least one will yield an (z, y) pair satisfying
x # +y (mod n); hence, thislast step of generating new (a;, b;) pairs does not usualy
occur.

This description of the random square methods is incomplete for two reasons. Firstly,
the optimal choice of t, the size of the factor base, is not specified; thisis addressed in
Note 3.24. Secondly, a method for efficiently generating the pairs (a;, b;) is not specified.
Several techniques have been proposed. In the simplest of these, called Dixon’s algorithm,
a; is chosen at random, and b; = a? mod n is computed. Next, trial division by elements
in the factor base is used to test whether b; is p;-smooth. If not, then another integer a; is
chosen at random, and the procedureis repeated.

The more efficient techniques strategically select an a; such that b; isrelatively small.
Since the proportion of p;-smooth integers in the interval [2, 2] becomes larger as = de-
creases, the probability of such b; being p;-smooth is higher. The most efficient of such
techniques is the quadratic sieve algorithm, which is described next.

3.2.6 Quadratic sieve factoring

Supposeaninteger n istobefactored. Letm = | "n], and consider the polynomial ¢(z) =
(x +m)? — n. Note that

q(z) = 2> +2max+m? —n ~ 22+ 2muz, (3.

whichissmall (relativeto n) if x issmall in absolute value. The quadratic sieve algorithm
sdectsa; = (z + m) and tests whether b; = (z + m)? — n is p;-smooth. Note that
a? = (x + m)? = b; (mod n). Note also that if aprime p dividesb; then (z +m)? =n

(mod p), and hence n is a quadratic residue modulo p. Thus the factor base need only
contain those primes p for which the L egendre symbol (%) is1 (Definition 2.145). Further-
more, since b; may be negative, —1 isincluded in the factor base. The steps of the quadratic

sieve algorithm are summarized in Algorithm 3.21.
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3.21 Algorithm Quadratic sieve algorithm for factoring integers

INPUT: acompositeinteger n that is not a prime power.
OUTPUT: anon-trivial factor d of n.

1

2.
3.

© N OO

Select the factor base S = {p1,p2,... ,p:}, Wherep; = —1land p; (j > 2) isthe
(4 — 1)t prime p for which n is a quadratic residue modulo p.
Computem = | n].
(Collect t 4 1 pairs (a;, b;). The z values are chosen in the order 0, +1, £2,....)
Set i«1. Whilei < t + 1 do the following:
3.1 Computeb = q(x) = (z+m)? —n, andtest using tria division (cf. Note 3.23)
by elementsin .S whether b isp;-smooth. If not, pick anew x and repeat step 3.1.
3.2 If bisps-smooth, say b = H;lej”, then set a;«(z + m), bj+b, and v; =
(Uil,/l}ig, Ce ,Uit), Wherev,-j = €j mod 2 forl < 7 <t.
3.3 i1+ 1.
Use linear algebra over Z to find a non-empty subset 7 C {1,2,...,¢ + 1} such
that 3=, v; = 0.
Compute z = [ [, a; mod n.
Foreach j, 1 < j <t,computel; = (3, 1 ei;)/2.
Computey = H;:l pz-j mod n.
If x = +y (mod n), thenfind another non-empty subset T C {1,2,... ,¢+1} such
that > .., v; = 0, and go to step 5. (In the unlikely case such a subset 1" does not
exist, replace afew of the (a;, b;) pairswith new pairs (step 3), and go to step 4.)
Compute d = ged(x — y, n) and return(d).

3.22 Example (quadratic sieve algorithmfor finding a non-trivial factor of n = 24961)

1

© NG A

10.
11

Select the factor base S = {—1,2,3,5,13,23} of sizet = 6. (7,11, 17 and 19 are
omitted from S since (%) = —1 for these primes.)

Computem = | 24961] = 157.

Following is the data collected for the first ¢ 4+ 1 values of x for which ¢(x) is 23-

smooth.

| i | x | q(z) | factorization of ¢(z) | a; | v; |
1| 0] —312 —2%.3.13 157 | (1,1,1,0,1,0)
2| 1 3 3 158 | (0,0,1,0,0,0)
3| -1| —625 —5 156 | (1,0,0,0,0,0)
4| 2| 320 26.5 159 | (0,0,0,1,0,0)
5| -2 | —936 —23.32.13 155 | (1,1,0,0,1,0)
6| 4| 960 26.3.5 161 | (0,0,1,1,0,0)
7| —6| —2160 —24.3%.5 151 | (1,0,1,1,0,0)

By inspection, v1 + vo +v5 = 0. (Inthe notation of Algorithm 3.21, T = {1, 2,5}.)
Compute z = (ajazas mod n) = 936.

Computel1 =1,1b=3,l135=2,14,=0,l5 =1,1 =0.

Computey = —23 - 32 . 13 mod n = 24025.

Since 936 = —24025 (mod n), another linear dependency must be found.

By inspection, v + v + vz = 0; thusT = {3, 6, 7}.

Compute z = (azagar mod n) = 23405.

Computell =1, lg =5, l3 =2, l4 =3, l5 =0, l6 =0.
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3.23

3.24

3.25

3.26

3.27

12. Computey = (—2°- 32 - 5% mod n) = 13922.
13. Now, 23405 % +13922 (mod n), socomputeged(z—y,n) = ged(9483,24961)
109. Hence, two non-trivial factors of 24961 are 109 and 229.

Ol

Note (sieving) Instead of testing smoothnessby trial divisionin step 3.1 of Algorithm 3.21,
amore efficient technique known as sieving is employed in practice. Observefirst that if p
isan odd primein thefactor baseand p dividesq(z), then p also divides g(z + Ip) for every
integer I. Thus by solving the equation ¢(z) = 0 (mod p) for z (for example, using the
algorithmsin §3.5.1), one knows either one or two (depending on the number of solutions
to the quadratic equation) entire sequences of other valuesy for which p divides ¢(y).
The sieving process is the following. Anarray Q[ ] indexedby z, —M < z < M, is
created and the z*® entry isinitializedto |1g |¢(z)|]. Letz1, z bethesolutionstog(z) = 0
(mod p), where p is an odd primein the factor base. Then the value |lgp| is subtracted
from those entries Q[z] in the array for which z = z; or z3 (mod p) and —M <z < M.
Thisis repeated for each odd prime p in the factor base. (The case of p = 2 and prime
powers can be handled in asimilar manner.) After the sieving, the array entries Q[x] with
values near 0 are most likely to be p;-smooth (roundoff errors must be taken into account),
and this can be verified by factoring ¢(z) by trial division.

Note (running time of the quadratic sieve) To optimize the running time of the quadratic
sieve, the size of the factor base should be judiciously chosen. The optimal selection of
t~ Ln[%, %] (see Example 2.61) is derived from knowledge concerning the distribution
of smooth integerscloseto ‘n. With this choice, Algorithm 3.21 with sieving (Note 3.23)
has an expected running time of L, [%, 1], independent of the size of the factors of n.

Note (multiplepolynomial variant) In order to collect asufficient number of (a;, b;) pairs,
the sieving interval must be quite large. From equation (3.1) it can be seen that |¢(z)]| in-
creases linearly with |z|, and consequently the probability of smoothness decreases. To
overcome this problem, a variant (the multiple polynomial quadratic sieve) was proposed
whereby many appropriatel y-chosen quadratic polynomialscan be used instead of just g(x),
each polynomial being sieved over aninterval of much smaller length. Thisvariant also has
an expected running time of Ln[%, 1], and is the method of choicein practice.

Note (paralldizingthe quadratic sieve) The multiple polynomial variant of the quadratic
sieveiswell suited for parallelization. Each node of aparallel computer, or each computer
inanetwork of computers, simply sievesthrough different collectionsof polynomials. Any
(as, b;) pair found is reported to a central processor. Once sufficient pairs have been col-
lected, the corresponding system of linear equationsis solved on asingle (possibly parallel)
compulter.

Note (quadratic sieve vs. elliptic curve factoring) The elliptic curve factoring algorithm
(§3.2.4) hasthe same* expected (asymptotic) running time as the quadratic sieve factoring
algorithm in the special case when n isthe product of two primes of equal size. However,
for such numbers, the quadratic sieveis superior in practice because the main steps in the
algorithm are single precision operations, compared to the much more computationally in-
tensive multi-precision elliptic curve operations required in the elliptic curve algorithm.

4This does not take into account the different o(1) termsin the two expressions Ly, % , 1.
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3.2.7 Number field sieve factoring

For several years it was believed by some people that a running time of Ln[%, 1] was, in
fact, the best achievable by any integer factorization algorithm. Thisbarrier was brokenin
1990 with the discovery of the number field sieve. Likethe quadratic sieve, the number field
sieveis an algorithm in the random square family of methods (§3.2.5). That is, it attempts
tofindintegersz and y suchthat 22 = y2 (mod n) andz # +y (mod n). Toachievethis
goal, two factor bases are used, one consisting of all prime numbersless than some bound,
and the other consisting of all prime ideals of horm less than some bound in the ring of
integers of a suitably-chosen algebraic number field. The details of the algorithm are quite
complicated, and are beyond the scope of this book.

A special version of the algorithm (the special number field sieve) applies to integers
of theformn = r¢ — s for small r and |s|, and has an expected running time of L,,[%, ],
wherec = (32/9)"/3 ~ 1.526.

The general version of the algorithm, sometimes called the general number field sieve,
appliesto al integers and has an expected running time of Ln[%, c], wherec = (64/9)'/3 ~
1.923. Thisis, asymptotically, the fastest algorithm known for integer factorization. The
primary reason why the running time of the number field sieve is smaller than that of the
guadratic sieve is that the candidate smooth numbers in the former are much smaller than
thosein the latter.

The general number field sieve was at first believed to be slower than the quadratic
sieve for factoring integers having fewer than 150 decimal digits. However, experiments
in 1994-1996 have indicated that the general number field sieve is substantially faster than
the quadratic sieve even for numbersin the 115 digit range. Thisimpliesthat the crossover
point between the effectiveness of the quadratic sieve vs. the general number field sieve
may be 110-120 digits. For this reason, the general number field sieve is considered the
current champion of al general-purpose factoring algorithms.

3.3 The RSA problem

3.28

3.29

Theintractability of the RSA problem formsthe basisfor the security of the RSA public-key
encryption scheme (§8.2) and the RSA signature scheme (§11.3.1).

Definition The RSA problem (RSAP) isthefollowing: given apositiveinteger n that isa
product of two distinct odd primes p and g, apositiveinteger e such that ged(e, (p—1)(¢—
1)) = 1, and an integer ¢, find an integer m such that m*® = ¢ (mod n).

In other words, the RSA problemisthat of finding et® roots modul o acompositeinteger

n. The conditionsimposed on the problem parameters n and e ensure that for each integer

c € {0,1,...,n — 1} thereisexactly onem € {0,1,...,n — 1} such that m¢ = ¢

(mod n). Equivalently, the function f : Z,, — Z,, defined as f(m) = m® mod nisa
permutation.

Remark (SQROOT vs. RSA prablems) Since p — 1 is even, it follows that e isodd. In

particular, e # 2, and hence the SQROQOT problem (Definition 3.43) is not a special case
of the RSA problem.
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3.30

Asisshown in §8.2.2(i), if the factors of n are known then the RSA problem can be
easily solved. Thisfact is stated next.

Fact RSAP <p FACTORING. That is, the RSA problem polytime reducesto the integer
factorization problem.

Itiswidely believed that the RSA and the integer factorization problems are computa-
tionally equivalent, although no proof of thisis known.

3.4 The quadratic residuosity problem

3.31

3.32

3.33

The security of the Goldwasser-Micali probabilistic public-key encryption scheme (§8.7)
and the Blum-Blum-Shub pseudorandom bit generator (§5.5.2) are both based on the ap-
parent intractability of the quadratic residuosity problem.

Recall from §2.4.5 that if n > 3 isan odd integer, then J,, istheset of dl a € Z),
having Jacobi symbol 1. Recall also that @,, isthe set of quadratic residues modulo » and
that the set of pseudosquares modulo n isdefined by Q,, = J,, — Q.

Definition The quadratic residuosity problem (QRP) isthefollowing: given an odd com-
posite integer n and a € J,, decide whether or not « is a quadratic residue modulo n.

Remark (QRP with a prime modulus) If n is a prime, then it is easy to decide whether
a € Z), isaquadratic residue modulo n since, by definition, a € @Q,, if and only if (%) =1,
and the Legendre symbol (%) can be efficiently calculated by Algorithm 2.149.

Assume now that n is a product of two distinct odd primes p and ¢. It follows from
Fact 2.137 that if a € J,,, thena € Q,, if and only if (%) = 1. Thus, if the factorization of
n isknown, then QRP can be solved simply by computing the L egendre symbol (%) . This
observation can be generalized to al integersn and leads to the following fact.

Fact QRP <p FACTORING. That is, the QRP polytime reduces to the FACTORING
problem.

On the other hand, if the factorization of n is unknown, then there is no efficient pro-
cedure known for solving QRP, other than by guessing the answer. If n = pq, then the
probability of a correct guessis 1 since |Q,| = |Q,| (Fact 2.155). It is believed that the
QRPisasdifficult asthe problem of factoring integers, although no proof of thisisknown.

3.5 Computing square roots in Z,

The operations of squaring modulo an integer n and extracting square roots modulo an in-
teger n are frequently used in cryptographic functions. The operation of computing square
roots modulo n. can be performed efficiently when n isaprime, but isdifficult whenn isa
composite integer whose prime factors are unknown.
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3.5.1 Case (i): n prime

3.34

3.35

3.36

Recall from Remark 3.32that if pisaprime, thenitiseasy to decideif a € Z; isaquadratic
residue modulo p. If a is, in fact, a quadratic residue modulo p, then the two square roots
of a can be efficiently computed, as demonstrated by Algorithm 3.34.

Algorithm Finding square roots modulo a prime p

INPUT: an odd prime p and aninteger a, 1 < a <p — 1.

OUTPUT: the two square roots of a modulo p, provided a is aquadratic residue modul o p.
1. ComputetheLegendresymbol (%) using Algorithm 2.149. If (%) = —1thenreturn(a

does not have a square root mocful 0 p) and terminate.

2. Selectintegersh, 1 < b < p — 1, at random until one is found with (19)) = 1. (bis

a quadratic non-residue modulo p.)

By repeated division by 2, writep — 1 = 25¢, where t is odd.

Compute a~! mod p by the extended Euclidean algorithm (Algorithm 2.142).

Set c+~b* mod p and r+a*t1/2 mod p (Algorithm 2.143).

For i from 1to s — 1 do the following:

6.1 Computed = (r?-a 1) mod p.
6.2 If d = —1 (mod p) then set r<—r - ¢ mod p.
6.3 Set c+—c? mod p.

7. Return(r, —r).

o Uk w

95—i—1

Algorithm 3.34 isarandomized al gorithm because of the manner in whichthe quadratic
non-residue b is selected in step 2. No deterministic polynomial-time algorithm for finding
a quadratic non-residue modulo a prime p is known (see Remark 2.151).

Fact Algorithm 3.34 has an expected running time of O((lg p)*) bit operations.

This running time is obtained by observing that the dominant step (step 6) is executed
s—1times, eachiteration involving amodul ar exponentiation and thustaking O((1g p)?) bit
operations (Table 2.5). Sinceintheworst case s = O(lIg p), the running time of O((1g p)*)
follows. When s issmall, theloop in step 6 is executed only a small number of times, and
the running time of Algorithm 3.34isO((1g p)?) bit operations. This point is demonstrated
next for the special casess = 1 and s = 2.

Specializing Algorithm 3.34tothecase s = 1 yieldsthefollowing simple deterministic
agorithm for finding square rootswhenp = 3 (mod 4).

Algorithm Finding square roots modulo a prime p where p = 3 (mod 4)

INPUT: an odd primep wherep = 3 (mod 4), and asquarea € Q5.
OUTPUT: the two sguare roots of a modulo p.

1. Computer = a®+1/4 mod p (Algorithm 2.143).

2. Return(r, —r).

Specializing Algorithm 3.34 to the case s = 2, and using the fact that 2 isa quadratic
non-residue modulo p whenp = 5 (mod 8), yields the following simple deterministic al-
gorithm for finding square rootswhenp = 5 (mod 8).
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3.37 Algorithm Finding square roots modulo a prime p where p = 5 (mod 8)

INPUT: an odd primep wherep = 5 (mod 8), and asquarea € Q,,.
OUTPUT: the two sguare roots of a modulo p.

1. Computed = a»~1/% mod p (Algorithm 2.143).

2. If d = 1 then compute r = a(®+3)/8 mod p.

3. If d = p — 1 then compute r = 2a(4a)® /% mod p.

4. Return(r, —r).

3.38 Fact Algorithms 3.36 and 3.37 have running times of O((1gp)?) bit operations.

Algorithm 3.39 for finding square roots modulo p is preferableto Algorithm 3.34 when
p—1= 2%t with s large.

3.39 Algorithm Finding square roots modulo a prime p

INPUT: an odd prime p and asquare a € Q.
OUTPUT: the two sguare roots of a modulo p.
1. Choose random b € Z, until b — 4a is a quadratic non-residue modulo p, i.e,
(h274a,) - _1
> .
2. Let f bethe polynomia z? — bx + a in Z,[z].
3. Computer = z(®+1/2 mod f using Algorithm 2.227. (Note: r will be an integer.)
4. Return(r, —r).

3.40 Fact Algorithm 3.39 has an expected running time of O((Ig p)?3) bit operations.

3.41 Note (computingsguarerootsinafinitefield) Algorithms3.34, 3.36, 3.37, and 3.39 canbe
extended in a straightforward manner to find square rootsin any finitefield I, of odd order
g = p™, pprime, m > 1. Square roots in finite fields of even order can a so be computed
efficiently via Fact 3.42.

3.42 Fact Each element a € Fam has exactly one square root, namely a2’

3.5.2 Case (ii): n composite

Thediscussion in this subsection isrestricted to the case of computing square roots modulo
n, where n is a product of two distinct odd primes p and q. However, all facts presented
here generalize to the case where n is an arbitrary composite integer.

Unlike the case where n isa prime, the problem of deciding whether agivena € Z),
is a quadratic residue modulo a composite integer n, is believed to be a difficult problem.
Certainly, if the Jacobi symbol (%) = —1, then a is a quadratic non-residue. On the other
hand, if (%) = 1, then deciding whether or not a is a quadratic residue is precisely the
quadratic residuosity problem, consideredin §3.4.

3.43 Definition The sguare root modulo n problem (SQROQOT) isthefollowing: given acom-

posite integer n and a quadratic residue a modulo n (i.e. a € @), find a square root of a
modulo 7.
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3.44

3.45

3.46

3.47

If the factors p and ¢ of n are known, then the SQROOT problem can be solved effi-
ciently by first finding square roots of a modulo p and modulo ¢, and then combining them
using the Chinese remainder theorem (Fact 2.120) to obtain the sguare roots of ¢ modulo
n. The steps are summarized in Algorithm 3.44, which, in fact, finds all of the four square
roots of a modulo n.

Algorithm Finding square roots modulo n given its prime factors p and g

INPUT: aninteger n, itsprimefactorsp and ¢, and a € Q...
OUTPUT: the four square roots of a modulo 7.
1. Use Algorithm 3.39 (or Algorithm 3.36 or 3.37, if applicable) to find the two square
rootsr and —r of @ modulo p.
2. Use Algorithm 3.39 (or Algorithm 3.36 or 3.37, if applicable) to find the two square
roots s and —s of a modulo q.
3. Usetheextended Euclidean algorithm (Algorithm 2.107) tofind integersc and d such
that cp + dg = 1.
4. Set x+(rdg + scp) mod n and y<+—(rdg — scp) mod n.
5. Return(+x mod n, £y mod n).

Fact Algorithm 3.44 has an expected running time of O((lg p)?*) bit operations.

Algorithm 3.44 shows that if one can factor n, then the SQROOT problem is easy.
More precisely, SQROOT <p FACTORING. The converse of this statement is also true,
as stated in Fact 3.46.

Fact FACTORING <p SQROOT. That is, the FACTORING problem polytime reduces
to the SQROOT problem. Hence, since SQROOT <p FACTORING, the FACTORING
and SQROQT problems are computationally equivalent.

Justification. Suppose that one has a polynomial-time algorithm A for solving the SQ-
ROOT problem. This algorithm can then be used to factor a given composite integer n as
follows. Select an integer = at random with ged(z,n) = 1, and compute a = 2% mod n.
Next, algorithm A isrun with inputs ¢ and n, and asguare root i of a modulo n isreturned.
If y = £z (mod n), then the trial fails, and the above procedure is repeated with a new
x chosen at random. Otherwise, if y # +z (mod n), then ged(z — y,n) is guaranteed to
be anon-trivial factor of n (Fact 3.18), namely, p or ¢q. Since a has four square roots mod-
ulon (£z and £z with £2 # +z (mod n)), the probability of success for each attempt
is % Hence, the expected number of attempts before a factor of n is obtained is two, and
conseguently the procedure runs in expected polynomial time. |

Note (strengthening of Fact 3.46) The proof of Fact 3.46 can be easily modified to estab-
lish the following stronger result. Let ¢ > 1 be any constant. If there is an algorithm A
which, given n, can find a square root modulo n in polynomial time for a ﬁ fraction
of al quadratic residuesa € @, then the algorithm A can be used to factor n in expected
polynomial time. The implication of this statement is that if the problem of factoring n is

difficult, then for almost all a € @,, itisdifficult to find square roots modulo n.

The computational equivalence of the SQROOT and FACTORING problems was the
basisof thefirst “provably secure” public-key encryption and signature schemes, presented
in §8.3.
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3.6 The discrete logarithm problem

3.48

3.49

3.50

3.51

3.52

3.53

The security of many cryptographic techniques depends on the intractability of the discrete
logarithm problem. A partia list of these includes Diffie-Hellman key agreement and its
derivatives (§12.6), EIGamal encryption (§8.4), and the EIGamal signature scheme and its
variants (§11.5). This section summarizes the current knowledge regarding algorithms for
solving the discrete logarithm problem.

Unless otherwise specified, algorithms in this section are described in the general set-
ting of a (multiplicatively written) finite cyclic group G of order n with generator o (see
Definition 2.167). For amore concrete approach, the reader may find it convenient to think
of G as the multiplicative group Z,, of order p — 1, where the group operation is simply
multiplication modul o p.

Definition Let G be afinite cyclic group of order n. Let o be a generator of G, and let
0B € G. Thediscrete logarithm of 3 to the base «, denoted log,, 3, is the unique integer z,
0<z<n-1,suchthat g = o®.

Example Letp = 97. Then Z§, isacyclic group of order n = 96. A generator of Zg, is
a = 5. Since53? = 35 (mod 97), logy 35 = 32 in Zg;. O

The following are some elementary facts about logarithms.

Fact Let o be agenerator of acyclic group G of order n, and let 3, v € G. Let s bean
integer. Thenlog, (87) = (log, B + log, ) mod n and log,, (%) = slog, B mod n.

Thegroupsof most interest in cryptography arethe multiplicativegroup I, of thefinite
fieldF, (§2.6), including the particular cases of the multiplicative group Z,, of the integers
modulo a prime p, and the multiplicative group F5,... of thefinitefield Fom of characteristic
two. Also of interest are the group of units Z; where n is a composite integer, the group
of points on an elliptic curve defined over afinite field, and the jacobian of a hyperelliptic
curve defined over afinitefield.

Definition The discrete logarithm problem (DLP) is the following: given a prime p, a
generator o of Z;, and an element 3 € Z;, find theinteger z, 0 < = < p — 2, such that

a® = (3 (mod p).

Definition Thegeneralized discretelogarithm problem (GDLP) isthefollowing: given a
finite cyclic group G of order n, agenerator o of G, and an element 5 € G, find the integer
2,0 <z <n-—1,suchthat o® = .

The discrete logarithm problem in elliptic curve groups and in the jacobians of hyper-
elliptic curves are not explicitly considered in this section. The discrete logarithm problem
in Z; isdiscussed further in §3.8.

Note (difficulty of the GDLP isindependent of generator) Let o and v be two generators
of acyclicgroup G of ordern, andlet 8 € G. Letz = log, 3,y = log, B,and z = log,, 7.
Thena® = § =¥ = (a*)Y. Consequently = zy mod n, and

log, 3 = (log, 3) (log, 7)™ mod n.

This means that any algorithm which computes logarithms to the base « can be used to
compute logarithms to any other base -y that is aso a generator of G.
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3.54

3.55

Note (generalization of GDLP) A more general formulation of the GDLPisthefollowing:
givenafinitegroup G and elementsc, 5 € G, find aninteger z suchthat o = (3, provided
that such an integer exists. In thisformulation, it is not required that G' be a cyclic group,
and, evenifitis, itisnot required that o be agenerator of G. Thisproblem may be harder to
solve, in general, than GDLP. However, in the case where G isacyclic group (for example
if G isthe multiplicative group of afinitefield) and the order of o isknown, it can be easily
recognized whether an integer x satisfying a® = 3 exists. Thisis because of the following
fact: if G isacyclic group, « isan element of order n in G, and 8 € G, then there exists
an integer z such that o = g if and only if ™ = 1.

Note (solvingthe DLP inacyclic group G of order n isin essence computing an isomor-
phism between G and Z,,) Even though any two cyclic groups of the same order are iso-
morphic (that is, they have the same structure although the elements may be written in dif-
ferent representations), an efficient algorithm for computing logarithms in one group does
not necessarily imply an efficient algorithm for the other group. To see this, consider that
every cyclic group of order n isisomorphic to the additive cyclic group Z,,, i.e., the set of
integers {0,1,2,... ,n — 1} where the group operation is addition modulo n. Moreover,
the discrete logarithm problem in the latter group, namely, the problem of finding an inte-
ger z such that ax = b (mod n) givena, b € Z,, is easy as shown in the following. First
note that there does not exist asolution z if d = ged(a, n) does not divide b (Fact 2.119).
Otherwise, if d divides b, the extended Euclidean algorithm (Algorithm 2.107) can be used
to find integers s and ¢ such that as + nt = d. Multiplying both sides of this equation by
the integer b/d gives a(sb/d) + n(tb/d) = b. Reducing this equation modulo n yields
a(sb/d) =b (mod n) and hencez = (sb/d) mod n isthe desired (and easily obtainable)
solution.

The known algorithms for the DL P can be categorized asfollows:
1. algorithmswhichwork in arbitrary groups, e.g., exhaustive search (§3.6.1), the baby-
step giant-step algorithm (§3.6.2), Pollard’s rho algorithm (§3.6.3);
2. agorithmswhich work in arbitrary groups but are especially efficient if the order of
the group has only small prime factors, e.g., Pohlig-Hellman al gorithm (§3.6.4); and
3. theindex-calculus agorithms (§3.6.5) which are efficient only in certain groups.

3.6.1 Exhaustive search

The most obvious algorithm for GDLP (Definition 3.52) isto successively computea?, o?,
o?,... until 3 isobtained. This method takes O(n) multiplications, where n is the order
of a, andistherefore inefficient if n islarge (i.e. in cases of cryptographic interest).

3.6.2 Baby-step giant-step algorithm

Letm = [ n], wheren isthe order of a. The baby-step giant-step algorithm is atime-
memory trade-off of the method of exhaustive search and isbased on thefollowing observa-
tion. If 3 = o, thenonecanwritez = im+ 5, where0 < i, j < m. Hence, o® = o'™a,
whichimplies 3(a~™)* = /. This suggests the following algorithm for computing .
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3.56 Algorithm Baby-step giant-step algorithm for computing discrete logarithms

INPUT: agenerator o of acyclic group G of order n, and an element 8 € G.
OUTPUT: the discrete logarithm 2 = log,, 3.

1. Setm«| n].

2. Construct a table with entries (j,a’) for 0 < j < m. Sort this table by second
component. (Alternatively, use conventional hashing on the second component to
store the entries in a hash table; placing an entry, and searching for an entry in the
table takes constant time.)

3. Compute o™ and set v+ (.

4. For i from0tom — 1 do thefollowing:

4.1 Check if « isthe second component of some entry in the table.
4.2 If v = o thenreturn(z = im + 7).
4.3 Set vy -a ™.

Algorithm 3.56 requires storage for O( ‘n) group elements. The table takes O( 'n)
multiplicationsto construct, and O( ‘nlgn) comparisonsto sort. Having constructed this
table, step 4 takes O( n) multiplicationsand O( "n) table look-ups. Under the assump-
tion that agroup multiplication takes more time than 1g n comparisons, the running time of
Algorithm 3.56 can be stated more concisely as follows.

3.57 Fact The running time of the baby-step giant-step algorithm (Algorithm 3.56) is O( 'n)
group multiplications.

3.58 Example (baby-step giant-step algorithm for logarithmsin Z7,5) Let p = 113. The ele-
ment o = 3 isagenerator of Zj,5 of order n = 112. Consider 8 = 57. Thenlog; 57 is
computed as follows.

1. Setm«| 112] =11.
2. Construct atable whose entries are (5, &/ mod p) for 0 < j < 11:
J 0(1]2] 3 4 5 6 71819 |10
3 mod113 || 1|3 |9 |27 |8 | 17|51 | 40| 7|21 |63
and sort the table by second component:
J 0O[1|8(2]5 ]9 ]3| 7]|6]|10] 4
3 mod113 || 1|3 | 7|9 | 17|21 |27 |40 | 51 | 63 | 81
3. Using Algorithm 2.142, compute ! = 37! mod 113 = 38 and then compute

a™™ = 38 mod 113 = 58.

4. Next, v = Ba"™ mod 113 for i = 0,1,2,... is computed until avalue in the

second row of the table is obtained. Thisyields:

i 0 1 2 3 4 5 6 7
4 =57-58" mod 113 || 57 | 29 | 100 | 37 | 112 | 55 | 26 | 39 | 2
Finally, since Ba 9 = 3 = a!, 8 = o!% and, therefore, log; 57 = 100. O

3.59 Note (restricted exponents) In order to improve performance, some cryptographic proto-
cols which use exponentiation in Z;, select exponents of a special form, e.g. having small
Hamming weight. (The Hamming weight of an integer is the number of onesin its binary
representation.) Suppose that p is a k-bit prime, and only exponents of Hamming weight ¢
are used. The number of such exponentsis (’Z) Algorithm 3.56 can be modified to search
the exponent space in roughly ( . ’/“2) steps. The algorithm also appliesto exponentsthat are
restricted in certain other ways, and extendsto al finite groups.
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3.6.3 Pollard’s rho algorithm for logarithms

Pollard’srho a gorithm (Algorithm 3.60) for computing discretel ogarithmsisarandomized
algorithm with the same expected running time as the baby-step giant-step algorithm (Al-
gorithm 3.56), but which requires a negligible amount of storage. For this reason, it isfar
preferableto Algorithm 3.56 for problemsof practical interest. For simplicity, it isassumed
in this subsection that G is a cyclic group whose order n is prime.

The group G is partitioned into three sets S1, Sa, and S5 of roughly equal size based
on some easily testable property. Some care must be exercised in selecting the partition; for
example, 1 ¢ S». Define a sequence of group elements gy, 21, Z2, ... by g = 1 and
{ 8-z, ifz; €Sy,

def

Tiy1 = f(z) = x2 if z; € Sy, (3.2

7
- x;, if x; € 53,
for ¢ > 0. This sequence of group elements in turn defines two sequences of integers
ag, a1, as,... andbg, by, bo, ... saisfying z; = a® (% fori > 0: ag = 0, by = 0, and for
12> 0,

Qa;, if x; € Sl,
a;41 = 4{ 2a; mod n, if z; € S, (3.3
a; + 1 modn, ifx; €S;,

and

2b; mod n, if z; € Sa, (34)
bi, if r; € S3.

b; + 1mod n, ifz; €Sy,
biy1 =

Floyd's cycle-finding algorithm (Note 3.8) can then be utilized to find two group elements
x; and zo; such that z; = xo;. Hence a® 3% = %32 and so B0i b2 = o2,
Taking logarithms to the base « of both sides of this last equation yields

(bi — ba;) - log, B = (az; — a;) (mod n).

Provided b; # by; (mod n) (note: b; = be; occurs with negligible probability), this equa-
tion can then be efficiently solved to determinelog,, 5.

3.60 Algorithm Pollard’s rho algorithm for computing discrete logarithms

INPUT: agenerator « of acyclic group G of primeorder n, and an element g € G.
OUTPUT: the discrete logarithm = = log,, .
1. Set 11?0(—1, a0<—0, b0<—0
2. Fori=1,2,... dothefollowing:
2.1 Usingthe quantitiesx; 1,a; 1,b;_1,and xo; o, a2; o, bs; o computed previ-
ously, compute x;, a;, b; and xa;, as;, ba; Using equations (3.2), (3.3), and (3.4).
2.2 If x; = x9;, then do the following:
Set T%bi — bgi mod n.
If » = 0 then terminate the algorithm with failure; otherwise, compute
x =11 (ay; — a;) mod n and return(z).

In the rare case that Algorithm 3.60 terminates with failure, the procedure can be re-
peated by selecting random integers ag, by intheinterval [1,n — 1], and starting with zy =
a® g Example3.61 with artificially small parametersillustrates Pollard’srho algorithm.
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3.61 Example (Pollard'srhoalgorithmfor logarithmsinasubgroup of Z3.;) Theelementa =
2 isagenerator of the subgroup G of Z3g; of order n = 191. Suppose 8 = 228. Partition
the elementsof G into three subsetsaccordingtotherulez € S;ifx =1 (mod 3),z € S,
ifx =0 (mod 3),andx € S5 if £ =2 (mod 3). Table 3.2 showsthe vauesof z;, a;, b;,
To;, as;, and by; at the end of each iteration of step 2 of Algorithm 3.60. Note that z14 =
Zog = 144. Finally, compute r = b4 — bog mod 191 = 125, r~! = 125! mod 191 =

136, and 7~ (azs — a14) mod 191 = 110. Hence, log, 228 = 110. O
L [[ @ [ai [ b [[ 220 | a2 [ bas |
1 228 0 1 279 0 2
2 279 0 2 184 1 4
3 92 0 4 14 1 6
4 184 1 4 256 2 7
5 205 1 5 304 3 8
6 14 1 6 121 6 18
7 28 2 6 144 12 38
8 256 2 7 235 | 48 | 152
9 152 2 8 72 48 154
10 304 3 8 14 96 118
11 372 3 9 256 | 97 | 119
12 121 6 18 304 | 98 120
13 12 6 19 121 5 51
14 144 | 12 | 38 144 10 104

Table 3.2: Intermediate steps of Pollard’'s rho algorithmin Example 3.61.

3.62 Fact Let G beagroup of order n, a prime. Assume that the function f : G — G de-
fined by equation (3.2) behaves like arandom function. Then the expected running time of
Pollard’srho algorithm for discretelogarithmsin G isO( “n) group operations. Moreove,
the algorithm requires negligible storage.

3.6.4 Pohlig-Hellman algorithm

Algorithm 3.63 for computing |ogarithmstakes advantage of the factorization of theorder n
of thegroup G. Let n = p7*p5?* - - - p&r bethe primefactorization of n. If z = log,, 3, then
theapproachistodeterminexz; = « mod p{’ for1 < ¢ < r, and then use Gauss sa gorithm
(Algorithm 2.121) to recover x mod n. Each integer z; is determined by computing the
digitsilo, l1, ... ,l,—1 inturnof itsp;-ary representation: =; = lo+11p; +- - -+lei,1p§i’1,
where0 <1; <p; — 1.

To see that the output of Algorithm 3.63 is correct, observe first that in step 2.3 the
order of @isq. Next, at iteration j of step 2.4, y = alo+tha++i-1¢"" Hence,

2 Jt+1 —lo—l1g—--—1; J—1 J+1
B = B/ = (a"loTha li-1a” " yn/a
- (an/q”l)mrlrlqu---—lj,qu—l
_ (a7l/qj+l)qujJr___Jrleilqe—l

(an/q)lj+---+leflqe’1’j _ (@)lj7

the last equality being true because @ has order q. Hence, log 3 isindeed equal to /.
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3.63 Algorithm Pohlig-Hellman algorithm for computing discrete logarithms

INPUT: agenerator o of acyclic group G of order n, and an element 8 € G.
OUTPUT: the discrete logarithm 2 = log,, 3.
1. Find the prime factorization of n: n = p{*p5? - - - p&, wheree; > 1.
2. For i from 1 to » do the following:
(Compute z; = lg + lyp; + -+ + Lo, _1p5* ™", where z; = = mod p)
2.1 (Smplify the notation) Set g<—p; and e<—e;.
2.2 Sety«+1andl_1<0.
2.3 Compute a«+a"/1.
2.4 (Computethel;) For j from 0 to e — 1 do the following:
Compute y<yali—17"" and B« (By 1)/
Compute ;< logz 3 (e.g., using Algorithm 3.56; see Note 3.67(iii)).
25 Setxi«lg+lig+---+ le_lqefl.
3. Use Gauss's algorithm (Algorithm 2.121) to computetheinteger , 0 < x < n — 1,
suchthat z = x; (mod p;*) forl <i <r.
4. Return(x).

Example 3.64 illustrates Algorithm 3.63 with artificially small parameters.

3.64 Example (Pohlig-Hellman algorithmfor logarithmsin Z3.,) Let p = 251. The element
a = 71 isagenerator of Z35, of order n = 250. Consider 8 = 210. Then z = log;; 210
is computed as follows.

1. The prime factorization of n is250 = 2 - 53.
2. (8 (Computez; =z mod 2)
Compute@ = /2 mod p = 250 and 8 = /2 mod p = 250. Thenz; =
logysp 250 = 1.
(b) (Computezy = 2 mod 53 = Iy + 115 + 1552)
i. Compute@ = o™/% mod p = 20.
ii. Computey = 1and 8 = (By 1)"/® mod p = 149. Using exhaustive
search,’ compute Iy = log,, 149 = 2.
iii. Computey = ya?modp = 21 and B = (By~")"? mod p = 113.
Using exhaustive search, computel; = log,; 113 = 4.
iv. Computey = ya*® mod p = 115and § = (By )P~ D/125 mod p =
149. Using exhaustive search, compute l; = log,, 149 = 2.
Hence, 2o =2 +4-5+2-5% = 72.
3. Finally, solve the pair of congruencesz = 1 (mod 2), x = 72 (mod 125) to get
x = logy, 210 = 197. O

3.65 Fact Given thefactorization of n, the running time of the Pohlig-Hellman algorithm (Al-
gorithm 3.63) isO(}";_, e;(lgn + ‘p;)) group multiplications.

3.66 Note (effectiveness of Pohlig-Hellman) Fact 3.65 implies that the Pohlig-Hellman algo-
rithmisefficient only if each primedivisor p; of n isrelatively small; thatis, if n isasmooth

5Exhaustive search is preferable to Algorithm 3.56 when the group is very small (here the order of @ is 5).
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integer (Definition 3.13). An example of a group in which the Pohlig-Hellman algorithm
is effective follows. Consider the multiplicative group Z;, where p is the 107-digit prime:

p = 227088231986781039743145181950291021585250524967592855
96453269189798311427475159776411276642277139650833937.

Theorder of Zy isn = p— 1 = 2*. 1047298 - 224737% - 350377*. Since the largest prime
divisor of p — 1 isonly 350377, it is relatively easy to compute logarithms in this group
using the Pohlig-Hellman algorithm.

3.67 Note (miscellaneous)

(i) If nisaprime, then Algorithm 3.63 (Pohlig-Hellman) isthe same as baby-step giant-
step (Algorithm 3.56).

(i) Instep 1 of Algorithm 3.63, afactoring algorithm which findssmall factorsfirst (e.g.,
Algorithm 3.9) should be employed; if the order n is not a smooth integer, then Al-
gorithm 3.63 isinefficient anyway.

(iii) Thestoragerequiredfor Algorithm 3.56 in step 2.4 can be eliminated by using instead
Pollard’s rho algorithm (Algorithm 3.60).

3.6.5 Index-calculus algorithm

The index-calculus algorithm is the most powerful method known for computing discrete
logarithms. The technique employed does not apply to al groups, but when it does, it of-
ten gives a subexponential-time algorithm. The algorithm is first described in the general
setting of acyclic group G (Algorithm 3.68). Two examplesare then presented to illustrate
how the index-calculus algorithm works in two kinds of groups that are used in practical
applications, namely Z,, (Example 3.69) and I3, (Example 3.70).

The index-calculus algorithm requires the selection of arelatively small subset S of
elements of G, called the factor base, in such away that a significant fraction of elements
of G can be efficiently expressed as products of elementsfrom S. Algorithm 3.68 proceeds
to precompute adatabase containing thelogarithms of all the elementsin S, and then reuses
this database each time the logarithm of a particular group element is required.

The description of Algorithm 3.68 isincomplete for two reasons. Firstly, atechnique
for selecting thefactor base S isnot specified. Secondly, amethod for efficiently generating
relations of the form (3.5) and (3.7) is not specified. The factor base S must be a subset of
G that issmall (so that the system of equations to be solved in step 3 is not too large), but
not too small (so that the expected number of trials to generate a relation (3.5) or (3.7) is
not too large). Suitable factor bases and techniques for generating relations are known for
some cyclicgroupsincluding Z,, (see §3.6.5(i)) and F5... (see §3.6.5(ii)), and, moreover, the
multiplicative group I, of agenera finitefield I,

3.68 Algorithm Index-calculus algorithm for discrete logarithms in cyclic groups

INPUT: agenerator @ of acyclic group G of order n, and an element 8 € G.
OUTPUT: the discrete logarithm y = log,, 5.

1. (Sdectafactor base S) Chooseasubset S = {p1, p2,... ,p:} of G suchthat a“sig-
nificant proportion” of al elementsin G can be efficiently expressed as a product of
elementsfrom S.

2. (Callect linear relationsinvolving logarithms of elementsin S)
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2.1 Select arandominteger k, 0 < k < n — 1, and compute a*.
2.2 Try to write o asaproduct of elementsin S:

t
ok = Hp?, c; > 0. (3.5)
i=1

If successful, take logarithms of both sides of equation (3.5) to obtain a linear
relation

t
k= Z cilog,p; (mod n). (3.6)
i=1

2.3 Repeat steps 2.1 and 2.2 until ¢ 4 ¢ relations of the form (3.6) are obtained (c
isasmall positiveinteger, e.g. ¢ = 10, such that the system of equations given
by the ¢ + ¢ relations has a unique solution with high probability).

3. (Find the logarithms of elementsin S) Working modulo n, solve the linear system
of t + c equations (in ¢ unknowns) of the form (3.6) collected in step 2 to obtain the
vauesof log, pi, 1 <i <t.

4. (Compute y)

4.1 Select arandom integer k, 0 < k < n — 1, and compute 3 - a*.

4.2 Try towrite 3 - o asaproduct of elementsin S:

t
g-of =]]p di>o0. (37
i=1
If the attempt isunsuccessful then repeat step 4.1. Otherwise, taking logarithms

of both sides of equation (3.7) yieldslog,, 3 = (Zle d;log,, p; — k) mod n;
thus, compute y = (22:1 d;log, p; — k) mod n and return(y).

(i) Index-calculus algorithm in Z;

For thefield Z,, p aprime, the factor base S can be chosen as thefirst ¢ prime numbers. A
relation (3.5) is generated by computing o mod p and then using trial division to check
whether this integer is a product of primesin S. Example 3.69 illustrates Algorithm 3.68
in Z; on a problem with artificially small parameters.

3.69 Example (Algorithm 3.68 for logarithmsin Z3,,) Let p = 229. Theelement o = 6 is
agenerator of Z3, Of order n = 228. Consider 8 = 13. Then logg 13 is computed as
follows, using the index-cal culus technique.

1. Thefactor baseis chosen to bethefirst 5 primes: S = {2,3,5,7,11}.
2. The following six relations involving elements of the factor base are obtained (un-
successful attempts are not shown):
6'%° mod 229 = 180 = 2% - 3% - 5
6'® mod 229 = 176 = 2* - 11
6'% mod 229 = 165 =3-5- 11
6°2 mod 229 = 154 =2.7-11
6'43 mod 229 = 198 =2-3%- 11
62 mod 229 =210=2-3-5-7.
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3.70

These relations yield the following six equations involving the logarithms of ele-
ments in the factor base:

100 = 2logg2+2logg 3 +loggs (mod 228)
18 = 4logg2+loggll (mod 228)
12 = logg3+1logg b+ logg1ll (mod 228)
62 = logg2+logs7+logs 11l (mod 228)

143 logg 2 4 21ogs 3 + logg 11 (mod 228)
206 = logg2+logg3+1loggb+logg7 (mod 228).

3. Solving the linear system of six eguations in five unknowns (the logarithms z; =
logg pi) yields the solutionslogg 2 = 21, logg 3 = 208, logs 5 = 98, logg 7 = 107,
and logg; 11 = 162.

4. Suppose that the integer k = 77 is selected. Since 3 - of = 13- 677 mod 229 =
147 = 3 - 72, it follows that

logg 13 = (logg 3+ 2logg 7 — 77) mod 228 = 117. O

(i) Index-calculus algorithm in F5..

The elements of the finite field Fom are represented as polynomialsin Zy[z] of degree at
most m — 1, where multiplication is performed modulo afixed irreducible polynomial f(z)
of degreem in Zs[z] (see §2.6). Thefactor base S can be chosen asthe set of all irreducible
polynomialsin Zy[z] of degree at most some prescribed bound b. A relation (3.5) is gener-
ated by computing o mod f(z) and then using trial division to check whether this poly-
nomial is a product of polynomiasin S. Example 3.70 illustrates Algorithm 3.68 in F5,.,
on aproblem with artificially small parameters.

Example (Algorithm 3.68 for logarithmsin IF;-) The polynomia f(z) = 27 + x + 1is
irreducible over Z,. Hence, the elements of the finite field IFo- of order 128 can be repre-
sented as the set of al polynomialsin Z[z] of degree at most 6, where multiplication is
performed modulo f(z). Theorder of F3; isn = 27 — 1 = 127, and « = x isagenerator
of F5-. Suppose 8 = 2% + 2® + 2% + 2 + 1. Theny = log,, 3 can be computed as follows,
using the index-cal culus technique.
1. Thefactor baseischosento betheset of al irreduciblepolynomialsin Z; [x] of degree
amost3: S={z,z+ 1,22 +z+ 1,23 +x+ 1,25+ 22 +1}.
2. Thefollowing five relations involving elements of the factor base are obtained (un-
successful attempts are not shown):

2" mod f(x) = 2°® + 2* =z*(z +1)?

2% mod f(z) =2 +2° + 2t + 2 =2(x+1)%(z® + 22 +1)
™ mod f(x) = 2%+ 2° + 2* + 2° =2?(x+ 1% +x+1)
¥ mod f(z) =a2° + 2+ +1 =+ +z+1)

' mod f(z) =2 +2° + 2 +2* + 2 +x+ 1= (2° + 2+ 1)(z® + 2*+1).

These relations yield the following five equations involving the logarithms of ele-
mentsin the factor base (for convenience of notation, let p; = log,, =, p2 = log, (z+
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3.71

3.72

3.73

1), p3s =log, (2% + z + 1), ps = log, (x> + = + 1), and p5 = log,.(z> + 2% + 1)):
18 4p1 + 2p2  (mod 127)
105 p1+2p2 +ps  (mod 127)
72 2p1 + 2ps + p3  (mod 127)
45 = 2po+ps (mod 127)
121 = py+ps (mod 127).

3. Solving thelinear system of five equationsin fiveunknownsyieldsthevaluesp; = 1,
p2 = 7,p3 = 56, ps = 31, and p5; = 90.
4. Suppose k = 66 is selected. Since

Bak = (z* + 2 + 22 + 2+ 1)2% mod f(z) = 2° + 2° + 2z = 2(2® + £ + 1),
it follows that
log, (z* + 2% + 22 + 2+ 1) = (p1 + 2p3 — 66) mod 127 = 47. O

Note (runningtime of Algorithm 3.68) To optimize the running time of theindex-calculus
algorithm, the size t of the factor base should be judiciously chosen. The optimal selection
relies on knowledge concerning the distribution of smooth integersin theinterval [1,p — 1]
for the case of Z,,, and for the case of IF5.. on the distribution of smooth polynomials (that
is, polynomiasall of whoseirreduciblefactors have relatively small degrees) among poly-
nomialsin Fz[x] of degreelessthan m. With an optimal choice of ¢, theindex-calculusal-
gorithm as described abovefor Z; and F3,. has an expected running time of L[5, ¢] where
g=porqg=2",andc > 0isaconstant.

Note (fastest algorithmsknown for discretelogarithmsin Z; and ;... ) Currently, the best
algorithm known for computing logarithmsin F3,, isavariation of theindex-cal culusalgo-
rithm called Coppersmith’salgorithm, with an expected running time of Lam [%, c| for some
constant ¢ < 1.587. The best algorithm known for computing logarithmsin Z;; is avaria-
tion of the index-cal culus algorithm called the number field sieve, with an expected running
timeof L, [%, 1.923]. Thelatest effortsin these directions are surveyed in the Notes section
(83.12).

Note (parallélization of the index-cal culus algorithm)

(i) For the optimal choice of parameters, the most time-consuming phase of the index-
calculus algorithm is usually the generation of relations involving factor base loga-
rithms (step 2 of Algorithm 3.68). The work for this stage can be easily distributed
among a network of processors by simply having the processors search for relations
independently of each other. The relations generated are collected by a central pro-
cessor. When enough relations have been generated, the corresponding system of lin-
ear eguations can be solved (step 3 of Algorithm 3.68) on asingle (possibly parallel)
computer.

(if) The database of factor base logarithms need only be computed once for a given fi-
nitefield. Relativeto this, the computation of individual logarithms (step 4 of Algo-
rithm 3.68) is considerably faster.
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3.6.6 Discrete logarithm problem in subgroups of Z;

Thediscretel ogarithm problem in subgroupsof Z,, hasspecial interest becauseits presumed
intractability is the basis for the security of the U.S. Government NIST Digital Signature
Algorithm (§11.5.1), among other cryptographic techniques.

Let p beaprimeand ¢ aprimedivisor of p — 1. Let G be the unique cyclic subgroup
of Z; of order ¢, and let o be agenerator of G. Then the discretelogarithm problemin G is
thefollowing: givenp, q, o, and 8 € G, find theuniqueinteger z, 0 < x < ¢—1, suchthat
a® = (mod p). The powerful index-calculus algorithms do not appear to apply directly
inG. Thatis, oneneedsto apply theindex-calculusagorithmin thegroup Z,, itself in order
to compute logarithmsin the smaller group G. Consequently, there are two approachesone
could take to computing logarithmsin G:

1. Usea“square-root” agorithm directly in G, such as Pollard's rho algorithm (Algo-
rithm 3.60). The running time of this approachisO( ‘q).

2. Let v beagenerator of Z7, and let ] = (p — 1)/q. Use an index-calculus algorithm
in Z,, tofind integers y and z such that o = 4% and 3 = ~*. Thenz = log, 8 =
(2/0)(y/1)~* mod q. (Sincey and z are both divisible by [, y/I and 2 /1 are indeed
integers.) The running time of this approach is Lp[%, c| if the number field sieve is
used.

Which of the two approachesis faster depends on the relative sizeof ‘g and Lp[§, q.

3.7 The Diffie-Hellman problem

3.74

3.75

3.76

The Diffie-Hellman problem is closely related to the well-studied discrete logarithm prob-
lem (DLP) of §3.6. Itisof significanceto public-key cryptography becauseits apparent in-
tractability formsthe basisfor the security of many cryptographic schemesincluding Diffie-
Hellman key agreement and its derivatives (§12.6), and ElGamal public-key encryption

(58.4).

Definition The Diffie-Hellman problem (DHP) isthe following: given aprime p, agen-
erator o of ZZ, and elements a® mod p and a® mod p, find a® mod p.

Definition The generalized Diffie-Hellman problem (GDHP) isthefollowing: given afi-
nite cyclic group G, agenerator a of G, and group elements o and a?, find a.?.

Suppose that the discrete logarithm problem in Z;; could be efficiently solved. Then
given o, p, a® mod p and o’ mod p, one could first find a from «, p, and a® mod p by
solving a discrete logarithm problem, and then compute (a®)® = a®® mod p. This estab-
lishesthefollowing rel ation between the Diffie-Hellman problem and the discretelogarithm
problem.

Fact DHP <p DLP. That is, DHP polytime reduces to the DLP. More generally, GDHP
<p GDLP.

The question then remains whether the GDLP and GDHP are computationally equiv-
alent. This remains unknown; however, some recent progressin thisregard is summarized
in Fact 3.77. Recall that ¢ is the Euler phi function (Definition 2.100), and an integer is
B-smogath if all its prime factorsare < B (Definition 3.13).
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3.77

Fact (known equivalences between GDHP and GDLP)

(i) Letpbeaprimewherethefactorizationof p—1isknown. Supposealsothat ¢(p—1)
is B-smooth, where B = O((In p)¢) for some constant ¢. Thenthe DHP and DLPin
Z,, are computationally equivalent.

(ii) More generdly, let G be afinite cyclic group of order n where the factorization of
n isknown. Suppose also that ¢(n) is B-smooth, where B = O((Inn)®) for some
constant ¢. Then the GDHP and GDLP in G are computationally equivalent.

(iii) Let G beafinitecyclic group of order n wherethe factorization of n isknown. If for
each prime divisor p of n either p — 1 or p + 1 is B-smooth, where B = O((Inn)¢)
for some constant ¢, then the GDHP and GDLPin G are computationally equivalent.

3.8 Composite moduli

3.78

3.79

3.80

*

The group of units of Z,,, namely Z;,, has been proposed for use in several cryptographic
mechanisms, including the key agreement protocols of Yacobi and McCurley (see §12.6
notes on page 538) and the identification scheme of Girault (see §10.4 notes on page 423).
There are connections of cryptographic interest between the discrete logarithm and Diffie-
Hellman problemsin (cyclic subgroupsof) Z;: , and the problem of factoring n. Thissection
summarizes the results known along these lines.

Fact Letn beacompositeinteger. If the discrete logarithm problemin Z;, can be solved
in polynomial time, then n can be factored in expected polynomial time.

In other words, the discrete logarithm problemin Z isat least as difficult as the prob-
lem of factoring n. Fact 3.79 isapartial converse to Fact 3.78 and states that the discrete
logarithmin Z. is no harder than the combination of the problems of factoring » and com-
puting discrete logarithmsin Z; for each prime factor p of n.

Fact Letn beacompositeinteger. Thediscretelogarithm probleminZ; polytimereduces
to the combination of the integer factorization problem and the discrete logarithm problem
in Z,, for each prime factor p of n.

Fact 3.80 statesthat the Diffie-Hellman problemin Z; isat | east as difficult asthe prob-
lem of factoring n.

Fact Letn = pg wherep and ¢ are odd primes. If the Diffie-Hellman problemin Z; can
be solved in polynomial time for a non-negligible proportion of al basesa € Z7, thenn
can be factored in expected polynomial time.

3.9 Computing individual bits

Whilethediscretelogarithm problemin Z; (§3.6), the RSA problem (§3.3), and the problem
of computing square roots modulo a composite integer n (§3.5.2) appear to be intractable,
when the problem parameters are carefully selected, it remains possiblethat it is much eas-
ier to compute some partial information about the solution, for example, its least signifi-
cant bit. It turns out that while some bits of the solution to these problems are indeed easy
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3.81

3.82

to compute, other bits are equally difficult to compute as the entire solution. This section
summarizes the results known along these lines. The results have applications to the con-
struction of probabilistic public-key encryption schemes (§8.7) and pseudorandom bit gen-
eration (§5.5).

Recall (Definition 1.12) that afunction f is caled a one-way functionif f(x) is easy
to compute for al = initsdomain, but for essentially al y in therange of £, it is computa
tionally infeasible to find any « such that f(z) = y.

Three (candidate) one-way functions

Although no proof is known for the existence of a one-way function, it iswidely believed
that one-way functions do exist (cf. Remark 9.12). The following are candidate one-way
functions (in fact, one-way permutations) since they are easy to compute, but their inver-
sion requires the solution of the discrete logarithm problemin Z, the RSA problem, or the
problem of computing square roots modulo n, respectively:

1. exponentiation modulo p. Let p beaprime and let o be agenerator of Z;. Thefunc-
tionis f : Z;, — Z, defined as f(z) = o mod p.

2. RSA function. Let p and ¢ be distinct odd primes, n = pq, and let e be an integer
such that ged(e, (p — 1)(¢ — 1)) = 1. Thefunctionis f : Z,, — Z, defined as
f(z) = z¢ mod n.

3. Rabin function. Let n = pq, where p and ¢ are distinct primes each congruent to
3 modulo 4. Thefunctionis f : Q, — Q. defined as f(z) = 22 mod n. (Re-
call from Fact 2.160 that f is a permutation, and from Fact 3.46 that inverting f,
i.e., computing principal square roots, is difficult assuming integer factorization is
intractable.)

The following definitionsare used in §3.9.1, 3.9.2, and 3.9.3.

Definition Let f : S — S be aone-way function, where S is afinite set. A Boolean
predicate B : S — {0, 1} issaid to be ahard predicate for f if:
(i) B(x) iseasy to computegivenz € S; and
(ii) anoraclewhich computes B(z) correctly with non-negligible advantage® given only
f(z) (wherez € S) can be used to invert f easily.

Informally, B isahard predicate for the one-way function f if determining the single
bit B(z) of information about z, given only f(z), isasdifficult asinverting f itself.

Definition Let f : S — S beaone-way function, where S isafinite set. A k-bit predi-
cate B : S — {0, 1}* issaid to be ahard k-bit predicate for £ if:
(i) B®)(z) iseasy to computegiven z € S; and
(i) for every Boolean predicate B : {0,1}* — {0,1}, an oracle which computes
B(B™(x)) correctly with non-negligible advantage given only f(x) (Wherez € S)
can be used to invert f easily.
If sucha B exists, then f issaid to hide k bits, or the k bits are said to be simultaneously
secure.

Informally, B(*) isahard k-bit predicatefor the one-way function £ if determining any
partial information whatsoever about B(*) (), given only f(z), is as difficult asinverting
f itself.

61n Definitions 3.81 and 3.82, the probability istaken over all choicesof z € S and random coin tosses of the
oracle.
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3.9.1 The discrete logarithm problem in Z; — individual bits

3.83

3.84

3.85

Let p bean odd primeand o agenerator of Z;,. Assume that the discrete logarithm problem
inZ, isintractable. Let 3 € Z;, and let = = log, 3. Recal from Fact 2.135 that 3 is
a quadratic residue modulo p if and only if x is even. Hence, the least significant bit of
z isequal to (1 — (£))/2, where the Legendre symbol (£) can be efficiently computed
(Algorithm 2.149). More generally, the following is true.

Fact Let p be an odd prime, and let « be a generator of Z,. Supposethat p — 1 = 2°,
wheret isodd. Then thereis an efficient algorithm which, given 3 € Z”, computes the s
least significant bits of = log,, 5.

Fact Letpbeaprimeand a agenerator of Z,. Definethe predicate B : Z,, — {0, 1} by

[0, ifil<z<(p-1)/2,
B<x)_{1, ifp—1)/2<z<p-—1.
Then B is a hard predicate for the function of exponentiation modulo p. In other words,

given p, a, and 3, computing the single bit B(z) of the discrete logarithm z = log,, B isas
difficult as computing the entire discrete logarithm.

Fact Letp beaprimeand o agenerator of Z,,. Let k = O(lglg p) be aninteger. Let the
interval [1, p— 1] bepartitionedinto 2¥ intervals Iy, I, . . . , I»_; of roughly equal lengths.
Define the k-bit predicate B : Z» — {0,1}* by B® (z) = jif € I;. Then B is
ahard k-bit predicate for the function of exponentiation modulo p.

3.9.2 The RSA problem — individual bits

3.86

3.87

Let n be a product of two distinct odd primes p and ¢, and let e be an integer such that
ged(e, (p — 1)(g — 1)) = 1. Givenn, e, and ¢ = z¢ mod n (for somez € Z,), some
information about x is easily obtainable. For example, since e is an odd integer,

() -(5)-6) -6

and hencethe singlebit of information (%) can be obtained simply by computing the Jacobi
symbol (5) (Algorithm 2.149). There are, however, other bits of information about x that
are difficult to compute, as the next two results show.

Fact Define the predicate B : Z,, — {0,1} by B(z) = x mod 2; that is, B(z) isthe
least significant bit of . Then B isahard predicate for the RSA function (see page 115).

Fact Let k = O(lglgn) be an integer. Define the k-bit predicate B : Z,, — {0, 1}*
by B*)(z) = 2 mod 2*. Thatis, B%*)(z) consistsof the k least significant bits of 2. Then
B isahard k-bit predicate for the RSA function.

Thus the RSA function haslg lg n simultaneously secure bits.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.



§3.10 The subset sum problem 117

3.9.3 The Rabin problem — individual bits
Let n = pq, where p and ¢ are distinct primes each congruent to 3 modulo 4.
3.88 Fact Definethe predicate B : Q,, — {0,1} by B(z) = = mod 2; that is, B(z) isthe

least significant bit of the quadratic residue z. Then B is a hard predicate for the Rabin
function (see page 115).

3.89 Fact Letk = O(lglgn) be an integer. Define the k-bit predicate B : Q,, — {0,1}*
by B*¥)(z) = 2 mod 2*. That is, B*)(z) consists of the k least significant bits of the
quadratic residue . Then B(*) isahard k-bit predicate for the Rabin function.

Thus the Rabin function has1g 1g n simultaneously secure bits.

3.10 The subset sum problem

The difficulty of the subset sum problem was the basis for the (presumed) security of the
first public-key encryption scheme, called the Merkle-Hellman knapsack scheme (§8.6.1).

3.90 Definition Thesubset sumproblem(SUBSET-SUM) isthefollowing: givenaset {a1, as,
. ,ap} of positive integers, called a knapsack set, and a positive integer s, determine
whether or not there is a subset of the a; that sum to s. Equivalently, determine whether

or not thereexist z; € {0,1},1 <4 <n,suchthat > | a;z; = s.

The subset sum problem above is stated as a decision problem. It can be shown that
the problem is computationally equivalent to its computational version which isto actually
determine the x; such that Zle a;r; = s, provided that such z; exist. Fact 3.91 provides
evidence of the intractability of the subset sum problem.

3.91 Fact The subset sum problem is NP-complete. The computational version of the subset
sum problem is NP-hard (see Example 2.74).

Algorithms 3.92 and 3.94 give two methods for solving the computational version of
the subset sum problem; both are exponential -timealgorithms. Algorithm 3.94 isthe fastest
method known for the general subset sum problem.

3.92 Algorithm Naive algorithm for subset sum problem

INPUT: aset of positive integers {a1, as, . .. , a, } and apositive integer s.
OUTPUT: z; € {0,1},1 < i <n,suchthat > , a;z; = s, provided such z; exist.

1. For each possiblevector (z1,x2, ... ,2,) € (Z2)™ do the following:
1.1 Computel = > | a;z;.
1.2 If I = sthenreturn(asolutionis (z1, 22, ... , Zy)).

2. Return(no solution exists).

3.93 Fact Algorithm 3.92 takes O(2™) steps and, hence, isinefficient.
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3.94

3.95

Algorithm Meet-in-the-middle algorithm for subset sum problem

INPUT: aset of positiveintegers {a1, as, . . . , a,, } and apositiveinteger s.
OUTPUT: z; € {0,1},1 < i <n,suchthat >_"" , a;z; = s, provided such z; exist.
1. Sett+|n/2].
2. Construct atable with entries (Y!_, a;xi, (z1, 22, ... , 1)) for (z1,22,... , 1) €
(Zy)t. Sort this table by first component.
3. Forexch (w441, %442, ,2n) € (Z2)™t, do the following:
3.1 Compute l =s— > 1", 1 aiw; and check, using abinary search, whether [ is
the first component of some entry in the table.
32 If 1 =Y" | a;z; thenreturn(asolutioniis (z1, za, . . . , p)).
4. Return(no solution exists).

Fact Algorithm 3.94 takes O(n2"/?) steps and, hence, isinefficient.

3.10.1 The L3-lattice basis reduction algorithm

3.96

3.97

3.98

3.99

The L3-lattice basis reduction algorithm is a crucial component in many number-theoretic
algorithms. Itisuseful for solving certain subset sum problems, and hasbeen used for crypt-
analyzing public-key encryption schemes which are based on the subset sum problem.

Definition Letz = (z1,x2,... ,2,) andy = (y1, Y2, - - - , yn) betwovectorsinR"™. The
inner product of z and y isthe real number

<T,Yy>= T1Y1 +T2Y2 + ** + TnYn-

Definition Lety = (y1,¥2,... ,yn) beavectorinR™. Thelength of y isthe real number

Iyl = TwuS = \Ji itk

Definition Let B = {b1,b2,...,b,} beaset of linearly independent vectorsin R" (so
thatm < n). Theset L of all integer linear combinationsof b,, bs, ... , b, iscalledalattice
of dimension m; that is, L = Zby + Zbs + - -- + Zb,,,. The set B iscdled abasisfor the
lattice L.

A lattice can have many different bases. A basis consisting of vectors of relatively
small lengthsis called reduced. The following definition provides a useful notion of are-
duced basis, and is based on the Gram-Schmidt orthogonalization process.

Definition Let B = {b,b2,...,b,} beabasisfor alattice L C R". Define the vectors
by (1 < i < n)andtherea numbers i; ; (1 < j < i < n)inductively by

L R P 38
Wij = W’ SJ<tsmn, (3.8)
i1

b; b — Zﬂi,jb;, 1<i<n. (39
=1

Thebasis B is said to be reduced (more precisely, Lovasz-reduced) if

1
pigl <5, fori<j<i<n
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(where |, ;| denotes the absolute value of y; ), and
3
2 > (5= wos) o2 a2, fori<is<n. (310)

Fact 3.100 explains the sense in which the vectorsin areduced basis are relatively short.

3.100 Fact Let L C R™ bealatticewith areduced basis {b1,bs, ... ,b,}.
(i) Forevery non-zeroz € L, ||by]| < 2"~ 1/2||z].
(i) More generdly, for any set {a1,as,... ,a;} of linearly independent vectorsin L,
5,11 < 2 Y2 max(|laa |, [laz]], .. , llall), forl<j<t.

The L3-lattice basis reduction algorithm (Algorithm 3.101) is a polynomial-time algo-
rithm (Fact 3.103) for finding areduced basis, given a basis for alattice.

3.101 Algorithm L3-lattice basis reduction algorithm

INPUT: abasis (b1, b, ... , b,) for alatice LinR™, m > n.
OUTPUT: areduced basisfor L.
1. bj«by, By < b3,b5 >.
2. For i from 2 to n do the following:
2.1 bi«b;.
2.2 For j from1tod — 1, set p; j«— < b;,bj > /Bj and by «=b} — p; ;bj.
2.3 B+ < b, b; >.
3. k2.
4. Execute subroutine RED(k,k — 1) to possibly update some y; ;.
5. 1f B, < (§ — pj x_1)Br—1 then do the following:
5.1 Set pu<—pug k-1, BBy + pi>Br_1, pip—14pBr—1/B, By« By_1By/B,
and Bi_1+B.
5.2 Exchange b, and by, 1.
5.3 If k > 2 then exchange pu1, ; and py—1; forj = 1,2,... , k — 2.
54 Fori=k+1,k+2,...,n:
Set ti—pui ke, fhik—Hik—1 — pt, AN pg g1t fl k1 i k-
55 k+ max(2,k —1).
5.6 Goto step 4.
Otherwise, forl =k — 2,k —3,... ,1, execute RED(k,l), and finally set k< k + 1.
6. If & < nthen go to step 4. Otherwise, return(by, b, - . . , by,).

RED(k,!) If |ur,| > 3 then do the following:
1 r«|0.5+ /,Lk’lj, bi<by — rby.
2. Forjfrom1tol — 1, set pug j¢pin,; — riet;-
3. [k kel — T

3.102 Note (explanation of selected steps of Algorithm 3.101)
(i) Stepsland2initializethealgorithm by computingd; (1 <: <mn)andp;; (1 <j <
i < n) asdefined in equations (3.9) and (3.8), and also B; =< b}, b > (1 < i < n).
(if) kisavariable such that the vectors by, b, ... ,bx—1 arereduced (initialy £ = 2 in
step 3). Thea gorithm then attemptsto modify by, sothat by, bs, .. . , by arereduced.
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(iii) In step 4, the vector by, is modified appropriately so that | ,x—1| < 1,
areupdatedfor1 < j < k — 1.

(iv) In step 5, if the condition of equation (3.10) is violated for ¢ = k, then vectors by
and by are exchanged and their corresponding parameters are updated. Also, k is
decremented by 1 sincethenit isonly guaranteed that b1, bo, . .. , bx_o are reduced.
Otherwise, by, is modified appropriately so that |y ;| < 3 forj =1,2,... k-2,
while keeping (3.10) satisfied. & isthen incremented because now by, bo, . . ., by, are
reduced.

and the p, ;

It can be proven that the L3-algorithm terminates after a finite number of iterations.
Note that if L is an integer lattice, i.e. L C Z", then the L3-algorithm only operates on
rational numbers. The precise running timeis given next.

3.103 Fact Let L C Z" bealattice with basis {b;,bo,... ,b,},andlet C € R, C' > 2, be such
that ||b;]|?> < C fori = 1,2,...,n. Thenthe number of arithmetic operations needed by
Algorithm 3.101 is O(n* log C), on integers of size O(n log C) bits.

3.10.2 Solving subset sum problems of low density

The density of aknapsack set, as defined below, providesameasure of the size of the knap-
sack elements.

3.104 Definition Let S = {a1,as,... ,an} beaknapsack set. The density of S is defined to be
- n
~ max{lga; | 1<i<n}

Algorithm 3.105 reduces the subset sum problem to one of finding a particular short
vector in alattice. By Fact 3.100, the reduced basis produced by the L3-algorithm includes
avector of length which is guaranteed to be within afactor of 2("~1)/2 of the shortest non-
zero vector of the lattice. In practice, however, the L3-algorithm usually finds a vector
which is much shorter than what is guaranteed by Fact 3.100. Hence, the L3-algorithm
can be expected to find the short vector which yields a solution to the subset sum problem,
provided that this vector is shorter than most of the non-zero vectorsin the lattice.

3.105 Algorithm Solving subset sum problems using L3-algorithm

INPUT: aset of positive integers {a1, as, . .. , a, } and aninteger s.
OUTPUT: z; € {0,1},1 < i <n,suchthat > , a;z; = s, provided such z; exist.
1 Letm=[1 .
2. Forman (n+1)-dimensional lattice L with basis consisting of the rows of the matrix

1 0 0 --- 0 ma
01 0 --- 0 mao
0 0 1 --- 0 mas
A= . . .
0 0 O 1 may,
3 3 3 3 ms

3. Find areduced basis B of L (use Algorithm 3.101).
4. For each vector y = (y1, Y2, - - - ,Yn+1) in B, do thefollowing:
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41 Ifypy1 =0andy; € {—3, 3} forali=1,2,... ,n,then do the following:
Fori=1,2,...,n, ety + 3.

If >" | aiz; = s, thenreturn(asolution is (z1, 2, . .. ,xy)).
Fori=1,2,...,n,setz; —y; + 3.
If 7" a;z; = s, thenreturn(asolution is (z1, 2, ... , z,)).

5. Return(FAILURE). (Either no solution exists, or the algorithm hasfailed to find one.)

Justification. Let the rows of the matrix A be by, bs, ... ,b,41, and let L bethe (n 4 1)-
dimensional latticegenerated by thesevectors. If (z1, zo, ... ,z,) isasolutionto thesubset
sum problem, the vector y = S°7" | @;b; — by isin L. Notethaty; € {—3, 3} for

i=12,...,nandy,,1 = 0. Since|ly|| = /yf +y3+---+y2,, thevector yisa
vector of short lengthin L. If the density of the knapsack setis small, i.e. the a; arelarge,
then most vectorsin L will have relatively large lengths, and hence y may be the unique
shortest non-zero vector in L. If thisisindeed the case, then there is good possibility of the
L3-algorithm finding a basis which includes this vector.

Algorithm 3.105 is not guaranteed to succeed. Assuming that the L3-algorithm always
produces a basis which includes the shortest non-zero lattice vector, Algorithm 3.105 suc-
ceeds with high probability if the density of the knapsack set is less than 0.9408.

3.10.3 Simultaneous diophantine approximation

3.106

3.107

Simultaneousdiophanti ne approximation is concerned with approximating avector (£, 22

q’ q’
cee %") of rational numbers (more generally, avector (a1, as, ... , ;) of real numbers)
by avector (2L, &2 , %) of rational numberswith asmaller denominator p. Algorithms

for finding simultaneous diophantine approximation have been used to break some knap-
sack public-key encryption schemes (§8.6).

Definition Letd beareal number. Thevector (%, %2, e %") of rational numbersissaid
to be a simultaneous diophantine approximation of §-quality to thevector (&, 22 ... )
q q q

of rational numbersif p < g and

<qg%fori=1,2,...,n.

’ qi

P— —Di
q

(The larger ¢ is, the better is the approximation.) Furthermore, it is an unusually good si-

multaneous diophantine approximation (UGSDA) if § > %

Fact 3.107 shows that an UGSDA is indeed unusual .

Fact Forn > 2, the set
q1 q dn
Sn(q) = {(Elaga 7?) |0§ g < g, ng(q1,QZ,--- aqnaq) = 1}

has at least 1™ members. Of these, at most O(¢g™(*~®+1) members have at least one 4-
quality simultaneous diophantine approximation. Hence, for any fixed § > % thefraction
of membersof .S, (¢) having at least one UGSDA approaches( as ¢ — oo.

Algorithm 3.108 reduces the problem of finding a §-quality simultaneous diophantine
approximation, and hence also a UGSDA, to the problem of finding a short vector in alat-
tice. The latter problem can (usually) be solved using the L3-lattice basis reduction.
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3.108 Algorithm Finding a §-quality simultaneous diophantine approximation

INPUT: avector w = (%, %2, . ,%") of rational numbers, and arational number ¢ > 0.
OUTPUT: ad-quality simultaneous diophantine approximation (%, ’;—2, e %) of w.

1. Choose an integer A ~ ¢°.
2. Use Algorithm 3.101 to find areduced basis B for the (n + 1)-dimensional lattice L
which is generated by the rows of the matrix

\g 0 0 -~ 0 0
0 A 0 -~ 0 0
0 0 N - 0 0
A= : . . _ .
0 0 0 -+ A O
—A@ —A@2 =A@z - —Agn 1
3. Foreachv = (v1,v2,... ,Vp, Unt1) iN B such that v, 11 # ¢, do the following:
3.1 p+vpt1-
3.2 Forifrom1ton, setpie% (% + pg;).
33 If [pL —p;| < ¢ °foreachi, 1 <i <, thenreturn(Z:, 22, ... Bx).

4. Return(FAILURE). (Either no §-quality simultaneous diophantine approximation ex-
ists, or the algorithm has failed to find one.)

Justification. Let the rows of the matrix A be denoted by b1, b, . .. , b,+1. Suppose that

(%, %2, ,%”) has a §-quality approximation (%, %2,... ,%"). Then the vector
x = pib1 +paba + -+ + puby + pbyya

= (A1 — pq1), A(P2q — Pg2); - - -, A(Pnq — D), P)
isin L and haslength less than approximately ( 'n + 1)q. Thusz is short compared to the

original basisvectors, which are of length roughly ¢'*°. Also, if v = (vy,va, ... ,v,41) IS
avector in L of length lessthan ¢, then the vector (%, %2, e, %”) definedin step 3isad-

quality approximation. Hencethereis agood possibility that the L3-algorithm will produce
areduced basis which includes a vector v that corresponds to a §-quality approximation.

3.11 Factoring polynomials over finite fields

The problem considered in this section isthe following: given apolynomial f(z) € F,[z],
with ¢ = p™, find itsfactorization f (z) = f1(z)° fo(x)®2 - - - fy(z)¢, whereeach f;(z) is
anirreducible polynomial inF,[z] and each e; > 1. (e; is called the multiplicity of the fac-
tor f;(z).) Severa situationscall for the factoring of polynomialsover finitefields, such as
index-calculus algorithms in F5,.. (Example 3.70) and Chor-Rivest public-key encryption
(§8.6.2). This section presents an algorithm for square-free factorization, and Berlekamp’s
classical deterministic algorithm for factoring polynomials which is efficient if the under-
lying field is small. Efficient randomized algorithms are known for the case of large g; ref-
erences are provided on page 132.
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3.11.1 Square-free factorization

Observefirst that f(x) may be divided by its leading coefficient. Thus, it may be assumed
that f(z) ismonic (see Definition 2.187). This section shows how the problem of factoring
a monic polynomial f(z) may then be reduced to the problem of factoring one or more
monic square-free polynomials.

3.109 Definition Let f(z) € Fq[z]. Then f(z) is square-freeif it has no repeated factors, i.e.,
thereis no polynomial g(z) with deg g(z) > 1 such that g(z)? divides f(x). The square-
free factorization of f(z) is f(z) = Hle fi(x)?, where each f;(z) is asquare-free poly-
nomial and ged(f;(x), f;(x)) = 1 for i # j. (Someof the f;(z) in the square-free factor-
ization of f(x) may bel.)

Let f(z) = >, a;z* be apolynomial of degreen > 1. The (formal) derivative of
f(z) isthe polynomia f'(z) = 77 ais1(i + 1)’ If f/(z) = 0, then, becausep isthe
characteristic of F,, in each term a;z° of f(z) for which a; # 0, the exponent of = must
be amultiple of p. Hence, f(z) hasthe form f(z) = a(z)?, where a(z) = 3"/ a¥/Py,

i=0 1
and the problem of finding the square-free factorization of f(x) isreduced to fi ndins that
of a(z). Now, itispossiblethat a’(x) = 0, but repesting this process as necessary, it may
be assumed that f'(x) # 0.

Next, let g(z) = ged(f(z), f/'(z)). Noting that an irreducible factor of multiplicity &
in f(z) will have multiplicity £ — 1 in f/(z) if ged(k,p) = 1, and will retain multiplicity
kin f'(x) otherwise, the following conclusions may be drawn. If g(z) = 1, then f(z)
has no repested factors; and if g(z) has positive degree, then g(x) is a non-trivia factor
of f(x), and f(z)/g(x) has no repeated factors. Note, however, the possibility of g(z)
having repeated factors, and, indeed, the possibility that ¢'(z) = 0. Nonetheless, g(z) can
berefined further asabove. The stepsare summarizedin Algorithm 3.110. Inthealgorithm,
F denotes the square-free factorization of afactor of f(z) in factored form.

3.110 Algorithm Square-free factorization

SQUARE-FREE(f (x))
INPUT: amonic polynomia f(x) € Fy[x] of degree > 1, where F, has characteristic p.
OUTPUT: the square-free factorization of f(x).
1. Seti+1, F+1, and compute f'(z).
2. 1f f'(x) = 0 thenset f(z)+ f(x)'/? and F+(SQUARE-FREE(f(x)))?.
Otherwise (i.e. f'(x) # 0) do the following:
2.1 Compute g(x)+ ged(f(x), f'(x)) and h(z)+ f(z)/g(x).
2.2 While h(z) # 1 do thefollowing:
Compute h(z)< ged(h(x), g(x)) and I(x)<h(z)/h(z).
Set F+F - 1(x)", i+ 1, h(z)«h(z), and g(x)g(x)/h(z).
2.3 If g(x) # 1 then set g(z)«g(z)'/? and F«F - (SQUARE-FREE(g(z)))".
3. Return(F).

Oncethe square-freefactorization f(z) = Hle fi(x)? isfound, the square-free poly-
nomials f1(z), fa(z),... , fr(z) need to be factored in order to obtain the complete fac-
torization of f(z).
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3.11.2 Berlekamp’s Q-matrix algorithm

Let f(x) = [I'_, fi(z) be amonic polynomial in F,[x] of degree n having distinct irre-
ducible factors f;(z), 1 < i < t. Berlekamp's Q-matrix algorithm (Algorithm 3.111) for
factoring f(z) is based on the following facts. The set of polynomials

B = {b(z) € Fyla]/(f(2)) [ b(z)* = b(z) (mod f(z))}

is avector space of dimension ¢ over F,. B consists of precisely those vectors in the null
space of the matrix Q — I,,, where @ isthe n x n matrix with (4, j)-entry g;; specified by

n—1
x modf(x):Zqijmj, 0<i<n-—1,
j=0

and where I,, isthe n x n identity matrix. A basis B = {vy(z),v2(x),... ,v(x)} for
B can thus be found by standard techniques from linear algebra. Finaly, for each pair of
distinct factors f;(z) and f;(z) of f(z) there exists some vi(z) € B andsomea € F,
such that f;(z) divides vy (x) — a but f;(z) does not divide v (x) — «; these two factors
can thus be split by computing ged(f(x), vk (z) — «). In Algorithm 3.111, a vector w =
(wo,wr,. .. ,wn_1) isidentified with the polynomial w(z) = 7" w;z'.

3.111 Algorithm Berlekamp’s Q-matrix algorithm for factoring polynomials over finite fields

INPUT: asquare-free monic polynomial f(x) of degreen inFy[z].
OUTPUT: the factorization of f(z) into monic irreducible polynomials.
1. Foreachi,0 < i < n — 1, compute the polynomial
n—1
' mod f(x) = Z qij .
=0
Note that each g;; is an element of F,.
2. Formthen x n matrix Q whose (i, j)-entry is g;;.
3. Determineabasisvy, va,. .. , v; for the null space of the matrix (Q — I,,), where I,,
isthen x n identity matrix. The number of irreduciblefactorsof f(z) isprecisely .
4. Set F+{f(z)}. (F isthe set of factors of f(x) found so far; their product is equal
to f(2))
5. For ¢ from 1 to ¢ do the following:

5.1 For each polynomia h(x) € F suchthat deg h(x) > 1 dothefollowing: com-
pute ged(h(z), v;(x) — a) for esch o € Fy, and replace h(x) in F by all those
polynomialsin the gcd computations whose degrees are > 1.

6. Return(the polynomialsin F' are theirreducible factors of f(x)).

3.112 Fact Therunningtimeof Algorithm 3.111 for factoring asgquare-free polynomial of degree
nover F, isO(n3 + tgn?) F,-operations, where ¢ is the number of irreducible factors of
f(x). The method is efficient only when ¢ is small.
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3.12 Notes and further references

§3.1

§3.2

Many of the topics discussed in this chapter lie in the realm of agorithmic number the-
ory. Excellent references on this subject include the books by Bach and Shallit [70], Cohen
[263], and Pomerance[993]. Adleman and McCurley [15] give an extensive survey of the
important open problems in algorithmic number theory. Two other recommended surveys
are by Bach [65] and Lenstra and Lenstra[748]. Woll [1253] gives an overview of the re-
ductions among thirteen of these problems.

A survey of theinteger factorization problem is given by Pomerance[994]. See also Chap-
ters8 and 10 of Cohen [263], and the books by Bressoud [198] and Koblitz [697]. Brillhart
et al. [211] provide extensive listings of factorizations of integers of the form b™ + 1 for
“smal” nandb = 2,3,5,6,7,10,11,12.

Bach and Sorenson [71] presented some algorithms for recognizing perfect powers
(cf. Note 3.6), one having aworst-case running time of O(1g® n) bit operations, and a sec-
ond having an average-case running time of O(lg2 n) bit operations. A more recent algo-
rithm of Bernstein [121] runs in essentialy linear time O((lgn)'*°(")). Fact 3.7 is from
Knuth [692]. Pages 367-369 of this reference contain explicit formulas regarding the ex-
pected sizes of the largest and second largest prime factors, and the expected total number
of prime factors, of arandomly chosen positive integer. For further results, see Knuth and
Trabb Pardo [694], who prove that the average number of bitsin the k" largest prime fac-
tor of arandom m-bit number is asymptotically equivalent to the average length of the k"
longest cycle in a permutation on m objects.

Floyd's cycle-finding algorithm (Note 3.8) is described by Knuth [692, p.7]. Sedgewick,
Szymanski, and Yao [1106] showed that by saving a small number of values from the z;
seguence, acollision can be found by doing roughly one-third thework asin Floyd'scycle-
finding algorithm. Pollard’s rho agorithm for factoring (Algorithm 3.9) is due to Pollard
[985]. Regarding Note 3.12, Cohen [263, p.422] provides an explanation for the restriction
¢ # 0,—2. Brent [196] presented a cycle-finding algorithm which is better on average
than Floyd’scycle-finding algorithm, and appliedit to yield afactorization algorithm which
is similar to Pollard’s but about 24 percent faster. Brent and Pollard [197] later modified
this algorithm to factor the eighth Fermat number Fy = 22° 4+ 1. Us ng techniques from
algebraic geometry, Bach [67] obtained the first rigorously proven result concerning the
expected running time of Pollard’s rho algorithm: for fixed &, the probability that a prime
factor p is discovered before step k is at least (%) /p + O(p~3/2) asp — cc.

The p — 1 agorithm (Algorithm 3.14) is due to Pollard [984]. Several practical improve-
ments have been proposed for the p — 1 algorithm, including those by Montgomery [894]
and Montgomery and Silverman [895], the latter using fast Fourier transform techniques.
Williams [1247] presented an algorithm for factoring n which is efficient if n has a prime
factor p suchthat p+ 1 issmooth. These methodswere generalized by Bach and Shallit [69]
to techniques that factor n efficiently provided n has a prime factor p such that the £** cy-
clotomic polynomial @ (p) is smooth. The first few cyclotomic polynomiasare @4 (p) =
p—1,®2(p) =p+1,®5(p) = p>+p+1,P4(p) = p*+1, 5(p) = p* +p* +p* +p+1,
The elliptic curve factoring algorithm (ECA) of §3.2.4 was invented by Lenstra [756].
Montgomery [894] gave several practical improvements to the ECA. Silverman and
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Wagstaff [1136] gave apractical analysis of the complexity of the ECA, and suggested op-
timal parameter selection and running-time guidelines. Lenstraand Manasse [ 753] imple-
mented the ECA on anetwork of MicroVAX computers, and were successful in finding 35-
decimal digit primefactors of large (at least 85 digit) composite integers. Later, Dixon and
Lenstra[350] implemented the ECA on a 16K MasPar (massively parallel) SIMD (single
instruction, multiple data) machine. The largest factor they found was a 40-decimal digit
prime factor of an 89-digit composite integer. On November 26 1995, Peter Montgomery
reported finding a47-decimal digit prime factor of the 99-digit composite integer 52°6 4 1
with the ECA.

Hafner and McCurley [536] estimated the number of integersn < x that can be factored
with probability at least % using at most ¢ arithmetic operations, by trial division and the
elliptic curve algorithm. Pomerance and Sorenson [997] provided the anal ogous estimates
for Pollard'sp — 1 algorithm and Williams' p 41 algorithm. They concludethat for agiven
running time bound, both Pollard’sp—1 and Williams' p+1 a gorithmsfactor moreintegers
than trial division, but fewer than the elliptic curve algorithm.

Pomerance[994] credits theidea of multiplying congruencesto produce asolution to 22 =
y? (mod n) for the purpose of factoring n (§3.2.5) to some old work of Kraitchik circa
1926-1929. The continued fraction factoring algorithm, first introduced by Lehmer and
Powers[744] in 1931, and refined more than 40 years|ater by Morrison and Brillhart [908],
was the first realization of a random square method to result in a subexponential-time al-
gorithm. The algorithm was later analyzed by Pomerance [989] and conjectured to have
an expected running time of Ln[% , '2]. If the smoothness testing in the algorithm is done
with the élliptic curve method, then the expected running time dropsto Ln[% ,1]. Morrison
and Brillhart were also the first to use the idea of afactor baseto test for good (a;, b;) pairs.
The continued fraction algorithm was the champion of factoring agorithms from the mid
1970s until the early 1980s, when it was surpassed by the quadratic sieve algorithm.

The quadratic sieve (QS) (§3.2.6) was discovered by Pomerance [989, 990]. The multiple
polynomial variant of the quadratic sieve (Note 3.25) is due to P. Montgomery, and is de-
scribed by Pomerance [990]; see also Silverman [1135]. A detailed practical analysis of
the QS is given by van Oorschot [1203]. Several practical improvements to the original
algorithms have subsequently been proposed and successfully implemented. The first seri-
ous implementation of the QS was by Gerver [448] who factored a 47-decimal digit num-
ber. In 1984, Davis, Holdridge, and Simmons [311] factored a 71-decimal digit number
with the QS. In 1988, L enstraand Manasse [ 753] used the QSto factor a 106-decimal digit
number by distributing the computations to hundreds of computers by electronic mail; see
also Lenstraand Manasse [754]. In 1993, the QS was used by Denny et a. [333] to factor
a 120-decimal digit number. In 1994, the 129-decimal digit (425 bit) RSA-129 challenge
number (see Gardner [440]), wasfactored by Atkinset al. [59] by enlisting the help of about
1600 computers around the world. The factorization was carried out in 8 months. Table 3.3
shows the estimated time taken, in mips years, for the above factorizations. A mipsyear is
equivalent to the computational power of acomputer that israted at 1 mips (millioninstruc-
tions per second) and utilized for one year, or, equivalently, about 3 - 10'3 instructions.

Thenumber field sieve wasfirst proposed by Pollard [987] and refined by others. Lenstraet
al. [752] described the special number field sieve (SNFS) for factoring integers of theform
r¢ — s for small positiver and |s|. A readable introduction to the algorithm is provided by
Pomerance [995]. A detailed report of an SNFS implementation is given by Lenstraet al.
[751]. This implementation was used to factor the ninth Fermat number Fy = 2°12 + 1,
which is the product of three prime factors having 7, 49, and 99 decimal digits. The gen-
eral number field sieve (GNFS) was introduced by Buhler, Lenstra, and Pomerance [219].
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§3.3

§3.4

§3.5

| Year | Number of digits | mipsyears |

1984 71 0.1

1988 106 140
1993 120 825
1994 129 5000

Table 3.3: Running time estimates for numbers factored with QS.

Coppersmith [269] proposed modifications to the GNFS which improve its running time
to Ln[é, 1.902], however, the method is not practical; another modification (also imprac-
tical) allows a precomputation taking L, [, 2.007] time and L,,[$, 1.639] storage, follow-
ing which al integers in a large range of values can be factored in Ln,[é, 1.639] time. A
detailed report of a GNFS implementation on a massively paralel computer with 16384
processors is given by Bernstein and Lenstra [122]. See a'so Buchmann, Loho, and Za-
yer [217], and Golliver, Lenstra, and McCurley [493]. More recently, Dodson and Lenstra
[356] reported on their GNFS implementation which was successful in factoring a 119-
decimal digit number using about 250 mipsyears of computing power. They estimated that
this factorization completed about 2.5 times faster than it would with the quadratic sieve.
Most recently, Lenstra [746] announced the factorization of the 130-decimal digit RSA-
130 challenge number using the GNFS. This number isthe product of two 65-decimal digit
primes. The factorization was estimated to have taken about 500 mips years of computing
power (compare with Table 3.3). The book edited by Lenstra and Lenstra [749] contains
several other articles related to the number field sieve.

The ECA, continued fraction algorithm, quadratic sieve, special number field sieve, and
general number field sieve have heuristic (or conjectured) rather than proven running times
because the analyses make (reasonable) assumptions about the proportion of integers gen-
erated that are smooth. See Canfield, Erdds, and Pomerance [231] for bounds on the pro-
portion of y-smooth integers in the interval [2, z]. Dixon’s algorithm [351] was the first
rigorously analyzed subexponential-time algorithm for factoring integers. The fastest rig-
orously analyzed agorithm currently known is due to Lenstra and Pomerance [759] with
an expected running time of Ln[%, 1]. These algorithms are of theoretical interest only, as
they do not appear to be practical.

The RSA problem wasintroduced inthelandmark 1977 paper by Rivest, Shamir, and Adle-
man [1060].

The quadratic residuosity problem is of much historical interest, and was one of the main
algorithmic problems discussed by Gauss [444].

An extensive treatment of the problem of finding square roots modulo a prime p, or more
generally, the problem of finding d* rootsin afinitefield, can befound in Bach and Shallit
[70]. The presentation of Algorithm 3.34 for finding square roots modulo a prime is de-
rived from Koblitz [697, pp.48-49]; a proof of correctness can be found there. Bach and
Shallit attribute the essential ideas of Algorithm 3.34 to an 1891 paper by A. Tonelli. Al-
gorithm 3.39 is from Bach and Shallit [70], who attribute it to a 1903 paper of M. Cipolla.

The computational equivalence of computing square roots modulo a composite n and fac-
toring n (Fact 3.46 and Note 3.47) was first discovered by Rabin [1023].
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§3.6

A survey of the discrete logarithm problem is given by McCurley [827]. See also Odlyzko
[942] for a survey of recent advances.

Knuth [693] attributes the baby-step giant-step algorithm (Algorithm 3.56) to D. Shanks.
The baby-step giant-step algorithmsfor searching restricted exponent spaces (cf. Note 3.59)
are described by Heiman [546]. Supposethat p isa k-bit prime, and that only exponents of
Hamming weight ¢ are used. Coppersmith (personal communication, July 1995) observed
that this exponent space can be searchedin & - (’;’;22) steps by dividing the exponent into two
equal piecesso that the Hamming weight of each pieceist/2; if k ismuch smaller than 2¢/2,
thisis an improvement over Note 3.59.

Pollard’srho algorithm for logarithms (Algorithm 3.60) isdueto Pollard [986]. Pollard also
presented alambda method for computing discrete logarithmswhich is applicablewhen z,
thelogarithm sought, isknowntolieinacertaininterval. Morespecificaly, if theinterval is
of width w, themethod isexpected totake O( “w) group operationsand requiresstoragefor
only O(1g w) group elements. Van Oorschot and Wiener [1207] showed how Pollard’srho
algorithm can be parallelized so that using m processors resultsin a speedup by afactor of
m. Thishas particular significanceto cyclic groups such as dlliptic curve groups, for which
no subexponential -time discrete logarithm algorithm is known.

The Pohlig-Hellman algorithm (Algorithm 3.63) was discovered by Pohlig and Hellman
[982]. A variation which represents the logarithm in a mixed-radix notation and does not
use the Chinese remainder theorem was given by Thiong Ly [1190].

According to McCurley [827], the basic ideas behind the index-cal culus algorithm (Algo-
rithm 3.68) first appeared in the work of Kraitchik (circa 1922-1924) and of Cunningham
(see Western and Miller [1236]), and was rediscovered by several authors. Adleman [8] de-
scribed themethod for the group Z,, and analyzed the complexity of thealgorithm. Hellman
and Reyneri [555] gave the first description of an index-calculus algorithm for extension
fieldsF,= with p fixed.

Coppersmith, Odlyzko, and Schroeppel [280] presented three variants of theindex-cal culus
method for computing logarithms in Z;: the linear sieve, the residue list sieve, and the
Gaussian integer method. Each has a heuristic expected running time of L, %, 1] (cf.
Note 3.71). The Gaussianinteger method, whichisrelated to the method of ElGamal [369],
wasimplemented in 1990 by LaMacchiaand Odlyzko [ 736] and was successful in comput-
ing logarithmsin Z;, with p a 192-hit prime. The paper concludesthat it should be feasible
to compute discrete logarithms modul o primes of about 332 bits (100 decimal digits) using
the Gaussianinteger method. Gordon[510] adapted the number field sievefor factoring in-
tegersto the problem of computing logarithmsin Z,;; hisalgorithm has a heuristic expected
running time of Lp[%, c], where ¢ = 3%/3 ~ 2.080. Schirokauer [1092] subsequently pre-
sented a modification of Gordon’s algorithm that has a heuristic expected running time of
Ly[%. ], wherec = (64/9)'/3 ~ 1.923 (Note 3.72). This s the same running time as
conjectured for the number field sieve for factoring integers (see §3.2.7). Recently, Weber
[1232] implemented the algorithms of Gordon and Schirokauer and was successful in com-
puting logarithmsin Z, where p isa40-decimal digit primesuchthat p— 1 isdivisibleby a
38-decimal digit (127-bit) prime. More recently, Weber, Denny, and Zayer (personal com-
munication, April 1996) announced the solution of a discrete logarithm problem modulo a
75-decimal digit (248-bit) prime p with (p — 1)/2 prime.

Blake et al. [145] made improvements to the index-cal culus technique for ;... and com-
puted logarithms in F..-. Coppersmith [266] dramatically improved the algorithm and
showed that under reasonable assumptions the expected running time of hisimproved a-
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gorithmis Lom [%, c| for some constant ¢ < 1.587 (Note 3.72). Later, Odlyzko [940] gave
several refinements to Coppersmith’s algorithm, and a detailed practical analysis; this pa-
per provides the most extensive account to date of the discrete logarithm problemin F3....
A similar practical analysiswas also given by van Oorschot [1203]. Most recently in 1992,
Gordon and McCurley [511] reported on their massively parallel implementation of Cop-
persmith’salgorithm, combined with their own improvements. Using primarily a1024 pro-
cessor nNCUBE-2 machine with 4 megabytes of memory per processor, they completed the
precomputation of logarithms of factor base elements (which is the dominant step of the
algorithm) required to compute logarithmsin F5z»7, Fas1a, and Fa.o: . The calculationsfor
5101 Were estimated to take 5 days. Gordon and McCurley al so completed most of the pre-
computations required for computing logarithmsin F3s0s ; the amount of time to complete
thistask on the 1024 processor N"CUBE-2 was estimated to be 44 days. They concluded that
computing logarithms in the multiplicative groups of fields as large as Fys0s still seemsto
be out of their reach, but might be possible in the near future with a concerted effort.

It was not until 1992 that a subexponential-time algorithm for computing discrete loga-
rithms over al finite fields IF, was discovered by Adleman and DeMarrais [11]. The ex-
pected running timeof thealgorithmis conjecturedto be L,, [%, c| for someconstant c. Adle-
man [9] generalized the number field sieve from algebraic number fieldsto algebraic func-
tion fieldswhich resulted in an algorithm, called the function field sieve, for computing dis-

crete logarithmsin IF,... ; the algorithm has a heuristic expected running time of L,» [%, c|
for some congtant ¢ > 0 whenlogp < m9(™), and where g is any function such that
0 < g(m) < 0.98 and lim,,,_, o g(m) = 0. The practicality of the function field sieve has
not yet been determined. It remains an open problem to find an algorithm with a heuristic
expected running time of L,|[3, ] for all finitefields F,.

The agorithms mentioned in the previous three paragraphs have heuristic (or conjectured)
rather than proven running times because the analyses make some (reasonable) assump-
tions about the proportion of integers or polynomials generated that are smooth, and aso
becauseit isnot clear when the system of linear equationsgenerated hasfull rank, i.e., yields
a unique solution. The best rigorously analyzed agorithms known for the discrete loga-
rithm problem in Z; and ;... are due to Pomerance [991] with expected running times of
Lyl3, 2]andLom[3, 2], respectively. Lovorn [773] obtained rigorously analyzed algo-
rithms for the fields F,,- and F,» with logp < m" %, having expected running times of
Lpz[%v %] and me[%’ 5]1 respectively.

Thelinear system of equations collected in the quadratic sieve and number field sieve fac-
toring algorithms, and the index-cal culus algorithms for computing discrete logarithmsin
Z, andF5,., arevery large. For the problem sizes currently under consideration, these sys-
tems cannot be solved using ordinary linear algebra techniques, due to both time and space
constraints. However, the equations generated are extremely sparse, typically with at most
50 non-zero coefficients per equation. The technique of structured or so-called intelligent
Gaussian elimination (see Odlyzko [940]) can be used to reduce the original sparse system
to amuch smaller system that is still fairly sparse. The resulting system can be solved us-
ing either ordinary Gaussian elimination, or one of the conjugate gradient, Lanczos (Cop-
persmith, Odlyzko, and Schroeppel [280]), or Wiedemann algorithms [1239] which were
also designed to handle sparse systems. LaMacchiaand Odlyzko [737] have implemented
some of these algorithmsand concluded that the linear algebrastages arising in both integer
factorization and the discrete logarithm problem are not running-time bottlenecks in prac-
tice. Recently, Coppersmith [272] proposed a modification of the Wiedemann algorithm
which allows parallelization of the algorithm; for an analysis of Coppersmith’s algorithm,
see Kaltofen [657]. Coppersmith [270] (see also Montgomery [896]) presented a modifi-
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cation of the Lanczos agorithm for solving sparse linear equations over Fy; this variant
appears to be the most efficient in practice.

Asan example of the numbersinvolved, Gordon and McCurley’s[511] implementation for
computing logarithmsinF.: produced atotal of 117164 equationsfrom afactor base con-
sisting of the 58636 irreducible polynomiasin Fy[x] of degree at most 19. The system of
equations had 2068707 non-zero entries. Structured Gaussian elimination was then applied
to this system, the result being a16139 x 16139 system of equations having 1203414 non-
zero entries, which was then solved using the conjugate gradient method. Another example
isfrom the recent factorization of the RSA-129 number (see Atkinset al. [59]). Thesieving
step produced a sparse matrix of 569466 rows and 524339 columns. Structured Gaussian
elimination was used to reduce this to a dense 188614 x 188160 system, which was then
solved using ordinary Gaussian elimination.

Thereare many ways of representing afinitefield, although any two finitefields of the same
order are isomorphic (see also Note 3.55). Lenstra[757] showed how to compute an iso-
morphism between any two explicitly given representations of afinitefield in deterministic
polynomial time. Thus, it is sufficient to find an algorithm for computing discrete loga-
rithmsin one representation of agiven field; this a gorithm can then be used, together with
the isomorphism obtained by Lenstra's algorithm, to compute logarithmsin any other rep-
resentation of the samefield.

Menezes, Okamoto, and Vanstone [843] showed how the discrete logarithm problem for an
elliptic curve over afinitefield F,, can be reduced to the discretelogarithm problemin some
extension field IF,». For the special class of supersingular curves, k is at most 6, thus pro-
viding a subexponential-time algorithm for the former problem. This work was extended
by Frey and Ruick [422]. No subexponential-time algorithm is known for the discrete log-
arithm problem in the more general class of non-supersingular elliptic curves.

Adleman, DeMarrais, and Huang [12] presented a subexponential-time algorithm for find-
ing logarithms in the jacobian of large genus hyperelliptic curves over finite fields. More
precisely, there exists anumber ¢, 0 < ¢ < 2.181, such that for all sufficiently largeg > 1
and all odd primes p withlogp < (2g + 1)%-98, the expected running time of the algo-
rithm for computing logarithms in the jacobian of agenus g hyperelliptic curve over Z,, is
conjectured to be Lyz2g+1[3, c].

McCurley [826] invented a subexponential-time algorithm for the discrete |ogarithm prob-
lem in the class group of an imaginary quadratic number field. See also Hafner and Mc-
Curley [537] for further details, and Buchmann and Dilllmann [216] for an implementation
report.

In 1994, Shor [1128] conceived randomized polynomial-timeal gorithmsfor computing dis-
crete logarithms and factoring integers on a quantum computer, a computational device
based on quantum mechanical principles; presently it isnot known how to build a quantum
computer, nor if thisis even possible. Also recently, Adleman [10] demonstrated the feasi-
bility of using toolsfrom molecular biology to solvean instance of the directed Hamiltonian
path problem, which is NP-complete. The problem instance was encoded in mol ecul es of
DNA, and the steps of the computation were performed with standard protocols and en-
zymes. Adleman notes that while the currently available fastest supercomputers can exe-
cute approximately 102 operations per second, it is plausible for aDNA computer to ex-
ecute 102° or more operations per second. Moreover such a DNA computer would be far
more energy-efficient than existing supercomputers. It is not clear at present whether it is
feasibleto build aDNA computer with such performance. However, should either quantum
computers or DNA computers ever become practical, they would have a very significant
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§3.7

§3.8

§3.9

§3.10

impact on public-key cryptography.

Fact 3.77(i) is due to den Boer [323]. Fact 3.77(iii) was proven by Maurer [817], who aso
proved more generally that the GDHP and GDLPin agroup G of order n are computation-
aly equivalent when certain extra information of length O(lgn) bitsis given. The extra
information depends only on n and not on the definition of G, and consists of parameters
that define cyclic elliptic curves of smooth order over the fields Z,,, where the p; are the
prime divisors of n.

Waldvogel and Massey [1228] proved that if a and b are chosen uniformly and randomly
fromtheinterval {0,1,... ,p—1},thevaluesa®® mod p areroughly uniformly distributed

(see page 537).

Facts 3.78 and 3.79 are due to Bach [62]. Fact 3.80 is due to Shmuely [1127]. McCurley
[825] refined this result to prove that for specially chosen composite n, the ability to solve
the Diffie-Hellman problem in Z; for the fixed base oo = 16 implies the ability to factor n.

The notion of ahard Boolean predicate (Definition 3.81) was introduced by Blum and Mi-
cali [166], who also proved Fact 3.84. The notion of ahard k-bit predicate (Definition 3.82)
wasintroduced by Long and Wigderson [772], who a so proved Fact 3.85; see also Perdlta
[968]. Fact 3.83 isdueto Peralta[968]. The resultson hard predicates and k-bit predicates
for the RSA functions (Facts 3.86 and 3.87) are dueto Alexi et al. [23]. Facts 3.88 and 3.89
are dueto Vazirani and Vazirani [1218].

Yao [1258] showed how any one-way length-preserving permutation can be transformed
into a more complicated one-way length-preserving permutation which has a hard predi-
cate. Subsequently, Goldreich and Levin[471] showed how any one-way function f canbe
transformed into a one-way function g which has ahard predicate. Their constructionisas
follows. Definethefunction g by g(p, ) = (p, f(z)), wherepisabinary string of the same
length as z, say n. Then g isaso aone-way functionand B(p,z) = Y ;" ; p;z; mod 2 is
ahard predicatefor g.

Hastad, Schrift, and Shamir [543] considered the one-way function f(z) = a® mod n,
wheren isaBlum integer and o € Z;,. Under the assumption that factoring Blum integers
isintractable, they proved that all the bits of thisfunction areindividually hard. Moreover,
the lower half aswell as the upper half of the bits are simultaneously secure.

The subset sum problem (Definition 3.90) is sometimes confused with the knapsack prob-
lemwhich is the following: given two sets {a1, az, . .. ,a,} and {b1,bs, ... , b, } of pos-
itive integers, and given two positive integers s and ¢, determine whether or not thereisa
subset S of {1,2,... ,n}suchthat )", qa; <sand), g b; > t. The subset sum prob-
lem is actually a special case of the knapsack problem whena; = b; fori = 1,2,... ,n
and s = t. Algorithm 3.94 is described by Odlyzko [941].

The L3-lattice basis reduction algorithm (Algorithm 3.101) and Fact 3.103 are both due to
Lenstra, Lenstra, and Lovasz [750]. Improved agorithms have been given for lattice basis
reduction, for example, by Schnorr and Euchner [1099]; consult also Section 2.6 of Cohen
[263]. Algorithm 3.105 for solving the subset sum problem involving knapsacks sets of low
density isfrom Coster et al. [283]. Unusually good simultaneous diophantine approxima-
tionswere first introduced and studied by Lagarias[723]; Fact 3.107 and Algorithm 3.108
are from this paper.
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§3.11

A readableintroduction to polynomial factorization algorithmsisgiven by Lidl and Nieder-
reiter [ 764, Chapter 4]. Algorithm 3.110 for square-freefactorization isfrom Geddes, Cza-
por, and Labahn [445]. Yun [1261] presented an algorithm that is more efficient than Algo-
rithm 3.110 for finding the square-free factorization of a polynomial. The running time of
thealgorithmisonly O(n?) Z,-operationswhen f () isapolynomial of degreen inZ,|z].
A lucid presentation of Yun’'salgorithmis provided by Bach and Shallit [70]. Berlekamp’s
Q-matrix algorithm (Algorithm 3.111) wasfirst discovered by Prange[999] for the purpose
of factoring polynomials of the form z™ — 1 over finitefields. The algorithm was later and
independently discovered by Berlekamp [117] who improved it for factoring general poly-
nomials over finitefields.

There is no deterministic polynomial-time a gorithm known for the problem of factoring
polynomials over finite fields. There are, however, many efficient randomized algorithms
that work well even when the underlying field is very large, such as the algorithms given
by Ben-Or [109], Berlekamp [119], Cantor and Zassenhaus [232], and Rabin [1025]. For
recent work along these lines, see von zur Gathen and Shoup [1224], as well as Kaltofen
and Shoup [658].
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4.1 Introduction

The efficient generation of public-key parametersis a prerequisite in public-key systems.
A specific example is the requirement of a prime number p to define a finite field Z,, for
use in the Diffie-Hellman key agreement protocol and its derivatives (§12.6). In this case,
an element of high order in Z; is also required. Another example is the requirement of
primes p and ¢ for an RSA modulus n = pq (§8.2). In this case, the prime must be of
sufficient size, and be “random” in the sense that the probability of any particular prime
being selected must be sufficiently small to preclude an adversary from gaining advantage
through optimizing a search strategy based on such probability. Prime numbers may be
required to have certain additional properties, in order that they do not make the associated
cryptosystems susceptible to specialized attacks. A third example isthe requirement of an
irreducible polynomial f(z) of degree m over thefinitefield Z,, for constructing the finite
field Fpm. Inthis case, an element of high order in ... isalso required.

Chapter outline

The remainder of §4.1 introduces basic concepts relevant to prime number generation and
summarizes someresultson thedistribution of primenumbers. Probabilistic primality tests,
the most important of which isthe Miller-Rabin test, are presented in §4.2. True primality
testsby which arbitrary integers can be proven to be prime are the topic of §4.3; sincethese
tests are generally more computationally intensive than probabilistic primality tests, they
are not described in detail. §4.4 presents four algorithms for generating prime numbers,
strong primes, and provable primes. §4.5 describes techniques for constructing irreducible
and primitive polynomials, while §4.6 considers the production of generators and elements
of high ordersin groups. §4.7 concludes with chapter notes and references.
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4.1.1 Approaches to generating large prime numbers

To motivate the organization of this chapter and introduce many of the relevant concepts,
the problem of generating large prime numbersisfirst considered. The most natural method
is to generate a random number n of appropriate size, and check if it is prime. This can
be done by checking whether n is divisible by any of the prime numbers < “n. While
more efficient methods are required in practice, to motivate further discussion consider the
following approach:

1. Generate as candidate arandom odd number n of appropriate size.
2. Test n for primality.
3. If n iscomposite, return to the first step.

A slight modificationisto consider candidatesrestricted to some search sequence start-
ing from n; atrivia search sequencewhichmay beusedisn,n+2,n+4,n+6,.... Us
ing specific search sequences may allow one to increase the expectation that acandidateis
prime, and to find primes possessing certain additional desirable propertiesa priori.

In step 2, the test for primality might be either a test which proves that the candidate
is prime (in which case the outcome of the generator is called a provable prime), or a test
which establishesaweaker result, such asthat n is*probably prime” (in which casethe out-
come of the generator is called a probable prime). In the latter case, careful consideration
must be given to the exact meaning of thisexpression. Most so-called probabilistic primal-
ity tests are absolutely correct when they declare candidates » to be composite, but do not
provide amathematical proof that n is primein the case when such anumber is declared to
be“probably” so. Inthe latter case, however, when used properly one may often be ableto
draw conclusions morethan adequatefor the purposeat hand. For thisreason, suchtestsare
more properly called compositeness tests than probabilistic primality tests. True primality
tests, which allow one to conclude with mathematical certainty that a number isprime, also
exist, but generally require considerably greater computational resources.

While (true) primality tests can determine (with mathematical certainty) whether atyp-
ically random candidate number is prime, other techniques exist whereby candidatesn are
specially constructed such that it can be established by mathematical reasoning whether a
candidate actually is prime. These are called constructive prime generation techniques.

A final distinction between different techniquesfor prime number generationisthe use
of randomness. Candidates are typically generated as a function of a random input. The
technique used to judge the primality of the candidate, however, may or may not itself use
random numbers. If it doesnot, thetechniqueisdeterministic, and theresultisreproducible;
if it does, the techniqueis said to be randomized. Both deterministic and randomized prob-
abilistic primality tests exist.

In some cases, prime numbers are required which have additional properties. For ex-
ample, to make the extraction of discrete logarithmsin Z; resistant to an algorithm dueto
Pohlig and Hellman (§3.6.4), itisarequirement that p — 1 have alarge primedivisor. Thus
techniques for generating public-key parameters, such as prime numbers, of special form
need to be considered.

4.1.2 Distribution of prime numbers

Let r(x) denote the number of primesin the interval [2,z]. The prime number theorem
(Fact 2.95) states that m(x) ~ 2.1 In other words, the number of primesin the interval

Inxz*

Lf f(x) and g(x) aretwo functions, then f(z) ~ g(z) meansthat limz—s oo géi; =1
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4.1

4.2

4.3

2, x] is approximately equal to . The prime numbersare quite uniformly distributed, as
the following three resultsillustrate.

Fact (Dirichlettheorem) If ged(a,n) = 1, thenthereareinfinitely many primes congruent
to a modulo n.

A more explicit version of Dirichlet’s theorem is the following.

Fact Letm(x,n,a) denotethe number of primesintheinterval [2, z] which are congruent
to a modulo n, where ged(a, n) = 1. Then

Xz
¢(n)lnzx’
In other words, the prime numbers are roughly uniformly distributed among the ¢(n) con-
gruence classesin Z;,, for any value of n.

m(z,n,a) ~

Fact (approximationfor thenth primenumber) Let p,, denotethe nth prime number. Then
Pn ~ nlnn. More explicitly,

nlnn < p, < n(lnn+Inlnn) forn > 6.

4.2 Probabilistic primality tests

4.4

The algorithmsin this section are methods by which arbitrary positive integers are tested to
provide partial information regarding their primality. More specifically, probabilistic pri-
mality tests have the following framework. For each odd positive integer n, aset W (n) C
Z,, is defined such that the following properties hold:

(i) givena € Z,, it canbecheckedin deterministic polynomial timewhether a € W (n);
(ii) if nisprime, then W (n) = 0 (the empty set); and
(iii) if n is composite, then #W (n) > 2.

Definition If n is composite, the elements of W (n) are called witnesses to the compos-
iteness of n, and the elements of the complementary set L(n) = Z,, — W(n) are caled
liars.

A probabilistic primality test utilizesthese properties of the setsW (n) inthefollowing
manner. Suppose that n is an integer whose primality isto be determined. An integer a €
Z, is chosen at random, and it is checked if a € W (n). The test outputs “composite” if
a € W(n), andoutputs“prime” if a & W(n). If indeeda € W (n), thenn issaidtofail the
primality test for the base a; inthiscase, n issurely composite. If a ¢ W (n), thennissaid
to passthe primality test for the base a; in this case, no conclusion with absolute certainty
can be drawn about the primality of n, and the declaration “prime” may be incorrect.?

Any single execution of thistest which declares“composite” establishesthiswith cer-
tainty. On the other hand, successiveindependent runs of thetest all of which returnthe an-
swer “prime” alow the confidencethat theinput isindeed primeto beincreased to whatever
level isdesired — the cumulative probability of error ismultiplicative over independent tri-
als. If thetest isrun ¢ timesindependently on the composite number n, the probability that
n isdeclared “prime” al ¢ times (i.e., the probability of error) is at most (%)t.

2This discussion illustrates why a probabilistic primality test is more properly called a compositeness test.
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4.5

Definition Aninteger n which isbelieved to be prime on the basis of a probabilistic pri-
mality test is called a probable prime.

Two probabilistic primality tests are covered in this section: the Solovay-Strassen test
(84.2.2) and the Miller-Rabin test (§4.2.3). For historical reasons, the Fermat test is first
discussed in §4.2.1; thistest is not truly a probabilistic primality test since it usually fails
to distinguish between prime numbers and special composite integers called Carmichael
numbers.

4.2.1 Fermat’s test

4.6

4.7

4.8

4.9

Fermat’stheorem (Fact 2.127) assertsthat if nisaprimeandaisanyinteger,1 < a < n-—1,
thena™ ! =1 (mod n). Therefore, given an integer n whose primality is under question,
finding any integer a in thisinterval such that this equivalence is not true sufficesto prove
that n is composite.

Definition Letn be an odd composite integer. Aninteger a, 1 < a < n — 1, such that
a" ! # 1 (mod n) iscaled a Fermat witness (to compositeness) for n.

Conversely, finding an integer a between 1 and n — 1 suchthat a® ! = 1 (mod n)
makes n appear to be a prime in the sense that it satisfies Fermat’s theorem for the base a.
This motivates the following definition and Algorithm 4.9.

Definition Let n be an odd composite integer and let a be aninteger, 1 < a < n — 1.
Then n is said to be a pseudoprimeto the base a if a® ! = 1 (mod n). Theinteger a is
called aFermat liar (to primality) for n.

Example (pseudoprime) The composite integer n = 341 (= 11 x 31) isa pseudoprime
tothebase 2 since 234 = 1 (mod 341). O

Algorithm Fermat primality test

FERMAT (n,t)
INPUT: an odd integer n > 3 and security parameter ¢ > 1.
OUTPUT: an answer “prime” or “composite” to the question: “Isn prime?’

1. For i from 1 to ¢ do the following:

1.1 Choosearandomintegera,2 < a <n — 2.
1.2 Computer = o™~ ! mod n using Algorithm 2.143.
1.3 If r # 1 then return(“ composite”).

2. Return(“prime”).

If Algorithm 4.9 declares “composite”, then n is certainly composite. On the other
hand, if the algorithm declares “prime” then no proof is provided that » is indeed prime.
Nonetheless, since pseudoprimes for a given base a are known to be rare, Fermat’s test
provides a correct answer on most inputs; this, however, is quite distinct from providing
a correct answer most of thetime (e.g., if run with different bases) on every input. In fact,
it does not do the latter because there are (even rarer) composite numbers which are pseu-
doprimesto every base a for which ged(a,n) = 1.
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4.10 Definition A Carmichael number n isacompositeinteger suchthat ™! =1 (mod n)

411

412

4.13

for all integers a which satisfy ged(a,n) = 1.

If n isa Carmichael number, then the only Fermat witnesses for n are those integers
a,1 < a < n-—1,forwhichged(a,n) > 1. Thus, if the prime factors of n are dl large,
then with high probability the Fermat test declaresthat n is“prime”, even if the number of
iterations ¢ is large. This deficiency in the Fermat test is removed in the Solovay-Strassen
and Miller-Rabin probabilistic primality tests by relying on criteriawhich are stronger than
Fermat’s theorem.

This subsection is concluded with some facts about Carmichael numbers. If the prime
factorization of n is known, then Fact 4.11 can be used to easily determine whether n is a
Carmichael number.

Fact (necessary and sufficient conditions for Carmichael numbers) A composite integer
n isa Carmichael number if and only if the following two conditions are satisfied:

(i) nissguare-freg, i.e., nisnot divisible by the square of any prime; and
(if) p — 1 dividesn — 1 for every primedivisor p of n.

A consequence of Fact 4.11 isthe following.
Fact Every Carmichael number isthe product of at least three distinct primes.

Fact (bounds for the number of Carmichael numbers)

(i) There are an infinite number of Carmichael numbers. In fact, there are more than
n?/T Carmichael numbersin the interval [2, n], once n is sufficiently large.
(i) The best upper bound known for C(n), the number of Carmichael numbers < n, is:

C(’I’L) S n1*{1+0(1)}lnlnlnn/ Inlnn for n — oo,

The smallest Carmichael number isn = 561 = 3 x 11 x 17. Carmichael numbers are
relatively scarce; there are only 105212 Carmichael numbers < 1015,

4.2.2 Solovay-Strassen test

4.14

4.15

The Solovay-Strassen probabilistic primality test was the first such test popularized by the
advent of public-key cryptography, in particular the RSA cryptosystem. Thereisno longer
any reason to use thistest, because an aternativeis available (the Miller-Rabin test) which
is both more efficient and always at least as correct (see Note 4.33). Discussion is nonethe-
lessincluded for historical completeness and to clarify this exact point, since many people
continue to reference this test.

Recall (§2.4.5) that (%) denotes the Jacobi symbol, and is equivalent to the Legendre
symbol if n isprime. The Solovay-Strassen test is based on the following fact.

Fact (Euler'scriterion) Let n be an odd prime. Then a("=1/2 = (£) (mod n) for all
integers a which satisfy ged(a,n) = 1.

Fact 4.14 motivates the following definitions.

Definition Letn bean odd compositeinteger and let a beaninteger, 1 < a <n — 1.

(i) If either ged(a,n) > 1ora" /2 # (%) (mod n), thenaiscaled an Euler witness
(to compositeness) for n.
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(i) Otherwise,i.e, if gcd(a,n) = 1anda™~1/2 = (%) (mod n), then n is said to be
an Euler pseudoprimeto the base a. (That is, n actslike aprimein that it satisfies
Euler’s criterion for the particular base a.) The integer a is caled an Euler liar (to
primality) for n.

4.16 Example (Euler pseudoprime) The compositeinteger 91 (= 7 x 13) isan Euler pseudo-
primeto the base 9 since 9*° = 1 (mod 91) and (g5) = 1. O

Euler’s criterion (Fact 4.14) can be used as abasis for aprobabilistic primality test be-
cause of the following result.

4.17 Fact Let n be an odd composite integer. Then at most ¢(n)/2 of all the numbersa, 1 <
a < n —1,areEuler liarsfor n (Definition 4.15). Here, ¢ isthe Euler phi function (Defi-
nition 2.100).

4.18 Algorithm Solovay-Strassen probabilistic primality test

SOLOVAY-STRASSEN(n,t)
INPUT: an odd integer n > 3 and security parameter ¢ > 1.
OUTPUT: an answer “prime” or “composite” to the question: “Isn prime?’
1. For i from 1 to ¢ do the following:
1.1 Choosearandomintegera,2 < a <n — 2.
1.2 Computer = a(®~1/2 mod n using Algorithm 2.143.
1.3 If r # 1 andr # n — 1 then return(* composite”).
1.4 Compute the Jacobi symbol s = (%) using Algorithm 2.149.
15 If r £ s (mod n) then return (“composite”).

2. Return(“prime”).

If ged(a,n) = d, thend isadivisor of » = a(®~1/2 mod n. Hence, testing whether
r # 1isstep 1.3, eiminates the necessity of testing whether ged(a,n) # 1. If Algo-
rithm 4.18 declares *“ composite”, then n is certainly composite because prime numbers do
not violate Euler’s criterion (Fact 4.14). Equivalently, if n is actually prime, then the algo-
rithm always declares“ prime”. On the other hand, if n isactually composite, then sincethe
basesa in step 1.1 are chosen independently during eachiteration of step 1, Fact 4.17 can be
used to deduce the following probability of the algorithm erroneously declaring “prime”.

4.19 Fact (Solovay-Strassen error-probability bound) Let » be an odd composite integer. The
probability that SOLOVAY-STRASSEN(n,t) declaresn to be “prime” islessthan (1)°.

4.2.3 Miller-Rabin test

The probabilistic primality test used most in practice is the Miller-Rabin test, also known
asthe strong pseudoprimetest. Thetest is based on the following fact.

4.20 Fact Letn bean odd prime, and let n — 1 = 2°r wherer isodd. Let a be any integer
such that ged(a,n) = 1. Then either a” = 1 (mod n) or a*” = —1 (mod n) for some
J,0<j<s-—-1.

Fact 4.20 motivates the following definitions.
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421

4.22

4.23

4.24

Definition Letn bean odd compositeinteger and let n — 1 = 2%r wherer isodd. Let a
be aninteger in theinterval [1,n — 1].

(i) Ifa” # 1 (mod n) andif a*" # —1 (mod n)foral j,0 < j < s— 1,thenais
called a strong witness (to compositeness) for n.

(ii) Otherwise, i.e., if either a” = 1 (mod n) or a®>’” = —1 (mod n) for some j, 0 <
j < s—1,thennissaidto be astrong pseudoprime to the base a. (That is, n acts
like aprimein that it satisfies Fact 4.20 for the particular base a.) The integer a is
called astrong liar (to primality) for n.

Example (strong pseudoprime) Consider the compositeinteger n = 91 (= 7 x 13). Since
91-1=90=2x45,s=1andr =45. Since9” = 9% =1 (mod 91), 91 isastrong
pseudoprime to the base 9. The set of all strong liarsfor 91 is:

{1,9,10,12, 16,17, 22,29, 38, 53, 62, 69, 74, 75, 79, 81, 82, 90}..

Notice that the number of strong liars for 91 is 18 = ¢(91)/4, where ¢ is the Euler phi
function (cf. Fact 4.23). |

Fact 4.20 can be used as abasisfor a probabilistic primality test due to the following result.
Fact If n isan odd composite integer, then at most % of al thenumbersa,1 < a <n-—1,

are strong liarsfor n. Infact, if n # 9, the number of strong liarsfor n isat most ¢(n)/4,
where ¢ isthe Euler phi function (Definition 2.100).

Algorithm Miller-Rabin probabilistic primality test

MILLER-RABIN(n,t)
INPUT: an odd integer n > 3 and security parameter ¢ > 1.
OUTPUT: an answer “prime” or “composite” to the question: “Isn prime?’
1. Writen — 1 = 2°r such that r is odd.
2. For i from 1 to ¢ do the following:
2.1 Choosearandominteger a,2 < a <n — 2.
2.2 Computey = a” mod n using Algorithm 2.143.
23 If y # 1 andy # n — 1 then do the following:
j+1.
Whilej < s —1andy # n — 1 do thefollowing:
Compute y<+y? mod n.
If y = 1 then return(“ composite”).
j7+ 1
If y # n — 1 then return (“composite’).
3. Return(“prime”).

Algorithm 4.24 tests whether each base a satisfies the conditions of Definition 4.21(i).
Inthefifth line of step 2.3, if y = 1, then a®’” = 1 (mod n). Sinceit isalso the case that
a? " # £1 (mod n), it followsfrom Fact 3.18 that n is composite (in fact ged(a2’ " —
1,n) isanon-trivia factor of n). Inthe seventh lineof step 2.3,if y # n — 1, thena isa
strong witness for n. If Algorithm 4.24 declares “composite”, then n is certainly compos-
ite because prime numbers do not violate Fact 4.20. Equivaently, if n is actually prime,
then the algorithm always declares “prime”’. On the other hand, if n is actually composite,
then Fact 4.23 can be used to deduce the foll owing probability of the algorithm erroneously
declaring “prime”.
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4.25 Fact (Miller-Rabin error-probability bound) For any odd composite integer n, the proba-
bility that MILLER-RABIN(n,t) declaresn to be “prime” islessthan (1)?.

4.26 Remark (number of strong liars) For most composite integers n, the number of strong
liars for n is actually much smaller than the upper bound of ¢(n)/4 given in Fact 4.23.
Consequently, the Miller-Rabin error-probability bound is much smaller than (i)t for most
positive integersn.

4.27 Example (some composite integers have very few strong liars) The only strong liars for
the compositeinteger n = 105 (= 3 x 5 x 7) are 1 and 104. More generally, if £ > 2 and
n isthe product of thefirst £ odd primes, there are only 2 strong liars for n, namely 1 and
n—1. (I

4.28 Remark (fixed bases in Miller-Rabin) If a; and as are strong liars for n, their product
aias isvery likely, but not certain, to also be a strong liar for n. A strategy that is some-
times employed isto fix the bases a in the Miller-Rabin algorithm to be thefirst few primes
(compositebases areignored because of the preceding statement), instead of choosing them
at random.

4.29 Definition Letp,ps,... ,p; denotethefirst ¢ primes. Then v, isdefined to be the small-
est positive compositeinteger which isastrong pseudoprimeto al thebasespy, po, . .. , p:-

The numbers v; can be interpreted as follows: to determine the primality of any integer
n < 1y, it issufficient to apply the Miller-Rabin algorithm to n with the bases a being the
first ¢ prime numbers. With this choice of bases, the answer returned by Miller-Rabin is
always correct. Table 4.1 givesthevaueof ¢, for 1 <¢ < 8.

[ ¥ |
2047

1373653
25326001
3215031751
2152302898747
3474749660383
341550071728321
341550071728321

O O O W N

Table 4.1: Smallest strong pseudoprimes. Thetablelistsvaluesof v, the smallest positive composite
integer that is a strong pseudoprime to each of thefirst ¢ prime bases, for 1 < ¢ < 8.

4.2.4 Comparison: Fermat, Solovay-Strassen, and Miller-Rabin
Fact 4.30 describes the rel ationshi ps between Fermat liars, Euler liars, and strong liars (see
Definitions 4.7, 4.15, and 4.21).

4.30 Fact Letn bean odd composite integer.

(i) If aisan Euler liar for n, thenit isalso a Fermat liar for n.
(i) If a isastrongliar for n, then it isalso an Euler liar for n.
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4.31 Example (Fermat, Euler, strong liars) Consider the composite integer n = 65 (= 5 X
13). The Fermat liars for 65 are {1,8,12,14,18,21,27,31, 34, 38, 44, 47,51, 53,57, 64}.
The Euler liars for 65 are {1, 8,14, 18,47,51,57,64}, while the strong liars for 65 are
{1,8,18,47,57,64}. a

For a fixed composite candidate n, the situation is depicted in Figure 4.1. This set-

Fermat liars for n

Euler liars for n

strong liars for n

Figure 4.1: Relationships between Fermat, Euler, and strong liars for a composite integer n.

tlesthe question of therelative accuracy of the Fermat, Solovay-Strassen, and Miller-Rabin
tests, not only in the sense of therelative correctness of each test on afixed candidaten, but
also in the sense that given n, the specified containments hold for each randomly chosen
basea. Thus, from acorrectness point of view, the Miller-Rabin test is never worsethan the
Solovay-Strassen test, which in turn is never worse than the Fermat test. Asthe following
result shows, thereare, however, some compositeintegersn for which the Solovay-Strassen
and Miller-Rabin tests are equally good.

4.32 Fact If n =3 (mod 4), thena isan Euler liar for n if and only if it isastrong liar for n.

What remainsis a comparison of the computational costs. Whilethe Miller-Rabin test
may appear more complex, it actually requires, at worst, the same amount of computation
as Fermat’stest in terms of modular multiplications; thusthe Miller-Rabin test is better than
Fermat’'stest in all regards. At worgt, the sequence of computations defined in MILLER-
RABIN(n,1) requires the equivalent of computing a("~1/2 mod n. It isaso the case that
MILLER-RABIN(n,1) requires less computation than SOLOVAY-STRASSEN(n,1), the
latter requiring the computation of a(*~1/2 mod n and possibly a further Jacobi symbol
computation. For this reason, the Solovay-Strassen test is both computationally and con-
ceptually more complex.

4.33 Note (Miller-Rabin is better than Solovay-Strassen) In summary, both the Miller-Rabin
and Solovay-Strassen tests are correct in the event that either their input is actually prime,
or that they declare their input composite. Thereis, however, no reason to use the Solovay-
Strassen test (nor the Fermat test) over the Miller-Rabin test. The reasonsfor this are sum-
marized below.

(i) The Solovay-Strassen test is computationally more expensive.
(ii) The Solovay-Strassentest isharder toimplement sinceit also involves Jacobi symbol
computations.
(iii) Theerror probability for Solovay-Strassen is bounded above by (%)t, whiletheerror
probability for Miller-Rabin is bounded above by (1)*.
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(iv) Any strong liar for n isaso an Euler liar for n. Hence, from a correctness point of
view, the Miller-Rabin test is never worse than the Solovay-Strassen test.
|

4.3 (True) Primality tests

4.34

The primality tests in this section are methods by which positive integers can be proven
to be prime, and are often referred to as primality proving algorithms. These primality
tests are generally more computationally intensive than the probabilistic primality tests of
§4.2. Conseguently, before applying one of theseteststo a candidate prime n, the candidate
should be subjected to a probabilistic primality test such as Miller-Rabin (Algorithm 4.24).

Definition Aninteger n which isdetermined to be prime on the basis of a primality prov-
ing algorithm is called a provable prime.

4.3.1 Testing Mersenne numbers

4.35

4.36

4.37

Efficient algorithms are known for testing primality of some specia classes of numbers,
such as Mersenne numbers and Fermat numbers. Mersenne primes n are useful because
the arithmetic in thefield Z,, for such n can be implemented very efficiently (see §14.3.4).
The Lucas-Lehmer test for Mersenne numbers (Algorithm 4.37) is such an agorithm.

Definition Lets > 2 beaninteger. A Mersenne number is an integer of theform 25 — 1.
If 25 — 1 isprime, thenit is called a Mersenne prime.

Thefollowing are necessary and sufficient conditions for a Mersenne number to be prime.

Fact Let s > 3. The Mersenne number n = 25 — 1 isprimeif and only if the following
two conditions are satisfied:
(i) sisprime; and
(i) the sequence of integers defined by ug = 4 and ug+1 = (u? — 2) mod n for k > 0
satisfiesus—o = 0.

Fact 4.36 |eads to the following deterministic polynomial-time algorithm for determin-
ing (with certainty) whether a Mersenne number is prime.

Algorithm Lucas-Lehmer primality test for Mersenne numbers

INPUT: aMersenne number n = 25 — 1 with s > 3.
OUTPUT: an answer “prime” or “composite” to the question: “Isn prime?’
1. Usetrial division to check if s has any factors between 2 and | ‘s|. If it does, then
return(“ composite”).
2. Setu+4.
3. For k from 1 to s — 2 do the following: compute u<(u? — 2) mod n.
4. If u = 0 then return(“prime”). Otherwise, return(“composite”).

It is unknown whether there are infinitely many Mersenne primes. Table 4.2 lists the
33 known Mersenne primes.
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Index M; | decimal Index M; | decimal
j digits J digits
1 2 1 18 3217 969
2 3 1 19 4253 1281
3 5 2 20 4423 1332
4 7 3 21 9689 2917
5 13 4 22 9941 2993
6 17 6 23 11213 3376
7 19 6 24 19937 6002
8 31 10 25 21701 6533
9 61 19 26 23209 6987
10 89 27 27 44497 13395
11 107 33 28 86243 25962
12 127 39 29 110503 33265
13 521 157 30 132049 39751
14 607 183 31 216091 65050
15 1279 386 327 | 756839 | 227832
16 2203 664 337 859433 | 258716
17 2281 687

Table 4.2: Known Mersenne primes. The table showsthe 33 known exponents M, 1 < j < 33, for
which 2Mi — 1 isa Mersenne prime, and also the number of decimal digitsin 2™ — 1. The question
marks after j = 32 and j = 33 indicatethat it is not known whether there are any other exponents s
between Ms3; and these numbers for which 25 — 1 is prime.

4.3.2 Primality testing using the factorization of n — 1

4.38

4.39

This section presents results which can be used to prove that an integer n is prime, provided
that thefactorization or apartial factorization of n—1 isknown. It may seem odd to consider
atechnique which requires the factorization of n — 1 as a subproblem — if integers of this
size can befactored, the primality of n itself could be determined by factoring n. However,
thefactorization of n— 1 may be easier to computeif n hasaspecia form, such asaFermat
number n = 22° + 1. Another situation where the factorization of n — 1 may be easy to
compute is when the candidate n is “ constructed” by specific methods (see §4.4.4).

Fact Let n > 3 beaninteger. Then n is primeif and only if there exists an integer a
satisfying:

(i) @ '=1 (mod n); and

(i) a»V/9 21 (mod n) for each prime divisor g of n — 1.

This result follows from the fact that Z;, has an element of order n — 1 (Definition 2.128)
if and only if n is prime; an element a satisfying conditions (i) and (ii) has order n — 1.

Note (primality test based on Fact 4.38) If n is a prime, the number of elements of order
n — lisprecisely ¢(n — 1). Hence, to prove acandidate n prime, one may simply choose
an integer a € Z,, at random and uses Fact 4.38 to check if a hasorder n — 1. If thisis
the case, then n is certainly prime. Otherwise, another a € Z,, is selected and the test is
repeated. If n isindeed prime, the expected number of iterations before an element a of
order n — 1 isselected isO(InInn); thisfollows since (n — 1)/¢(n — 1) < 61nlnn for
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4.40

4.41

4.42

n > 5 (Fact 2.102). Thus, if such an a is not found after a “reasonable’” number (for ex-
ample, 12 In1n n) of iterations, then n is probably composite and should again be subjected
to a probabilistic primality test such as Miller-Rabin (Algorithm 4.24).2 Thismethod is, in
effect, a probabilistic compositenesstest.

The next result givesamethod for proving primality which requires knowledge of only
apartial factorization of n — 1.

Fact (Pocklington'stheorem) Letn > 3 beaninteger, andletn = RF + 1 (i.e. F' divides
n — 1) where the prime factorization of F'is F' = ]'[E.:1 q;fj. If there exists an integer a
satisfying:

(i) a» 1 =1 (mod n); and

(ii) ged(a»1/% —1,n) =1foreachj,1 <j <t,
then every primedivisor p of n iscongruent to 1 modulo F'. It followsthat if F' >
thenn isprime.

n—1,

If n isindeed prime, then the following result establishes that most integers a satisfy
conditions (i) and (ii) of Fact 4.40, provided that the primedivisorsof F > n — 1 are
sufficiently large.

Fact Letn = RF + 1 beanodd primewith F > ‘n— 1 and ged(R, F) = 1. Let the
distinct primefactorsof F' beqi, g2, ... ,q;. Then the probability that arandomly selected
basea, 1 < a < n — 1, satisfiesboth: (i) a”~! = 1 (mod n); and (ii) gcd(a(”*l)/‘“ -
1,n) =1foreach;j,1<j<tis[[;_,(1—1/g;) >1—3_,1/g;.

Thus, if thefactorization of adivisor FF > ‘n— 1 of n — 1 isknown thento test n for
primality, one may simply choose random integers a in the interval [2,n — 2] until oneis
found satisfying conditions (i) and (ii) of Fact 4.40, implying that n is prime. If such an a
is not found after a“reasonable’ number of iterations,* then n is probably composite and
this could be established by subjecting it to a probabilistic primality test (footnote 3 also
applies here). This method is, in effect, a probabilistic compositeness test.

The next result givesamethod for proving primality which only requiresthefactoriza-
tion of adivisor F' of n — 1 that isgreater than 2'n. For an example of the use of Fact 4.42,
see Note 4.63.

Fact Letn > 3 beanoddinteger. Let n = 2RF + 1, and suppose that there exists an
integer a satisfying both: (i) a®~! = 1 (mod n); and (i) ged(a»~1/? — 1,n) = 1 for
each primedivisor g of F'. Letz > 0 andy bedefinedby 2R = 2F +yand0 < y < F.
If £ > *nandif y?> — 4z isneither 0 nor a perfect square, then n is prime.

4.3.3 Jacobi sum test

The Jacobi sum test is another true primality test. The basic ideais to test a set of con-
gruences which are analogues of Fermat’s theorem (Fact 2.127(i)) in certain cyclotomic
rings. The running time of the Jacobi sum test for determining the primality of an integer
nisO((Inn)cnininn) pit operations for some constant c. Thisis“amost” a polynomial-
time algorithm since the exponent In In In n acts like a constant for the range of valuesfor

3 Another approach isto run both algorithmsin parallel (with an unlimited number of iterations), until one of
them stops with a definite conclusion “prime” or “composite”.
4The number of iterationsmay betaken to be T where P < (£)!°, andwhere P = 1—[T}_, (1 —1/g;).
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n of interest. For example, if n < 25!2, thenInlnlnn < 1.78. The version of the Ja-
cobi sum primality test used in practice is arandomized algorithm which terminateswithin
O(k(Inn)e!nininny steps with probability at least 1 — (3)* for every k£ > 1, and always
givesacorrect answer. One drawback of the algorithmisthat it does not produce a* certifi-
cate” which would enable the answer to be verified in much shorter time than running the
algorithm itself.

The Jacobi sum test is, indeed, practical in the sense that the primality of numbers that
are several hundred decimal digits long can be handled in just a few minutes on a com-
puter. However, the test is not as easy to program as the probabilistic Miller-Rabin test
(Algorithm 4.24), and the resulting codeis not as compact. The details of the algorithm are
complicated and are not given here; pointersto the literature are given in the chapter notes
on page 166.

4.3.4 Tests using elliptic curves

Elliptic curve primality proving algorithmsare based on an €lliptic curve anal ogue of Pock-
lington’s theorem (Fact 4.40). The version of the algorithm used in practice is usually re-
ferred to as Atkin's test or the Elliptic Curve Primality Proving algorithm (ECPP). Under
heuristic arguments, the expected running time of this algorithm for proving the primality
of an integer n has been shown to be O((Inn)®*<) bit operations for any e > 0. Atkin's
test has the advantage over the Jacobi sum test (§4.3.3) that it produces a short certificate of
primality which can be used to efficiently verify the primality of the number. Atkin's test
has been used to prove the primality of nhumbers more than 1000 decimal digits long.

The details of the algorithm are complicated and are not presented here; pointersto the
literature are given in the chapter notes on page 166.

4.4 Prime number generation

This section considers algorithms for the generation of prime numbers for cryptographic
purposes. Four algorithms are presented: Algorithm 4.44 for generating probable primes
(see Definition 4.5), Algorithm 4.53 for generating strong primes (see Definition 4.52), Al-
gorithm 4.56 for generating probable primesp and ¢ suitablefor useinthe Digital Signature
Algorithm (DSA), and Algorithm 4.62 for generating provabl e primes (see Definition 4.34).

4.43 Note (prime generation vs. primality testing) Prime number generation differs from pri-
mality testing as described in §4.2 and §4.3, but may and typically does involve the latter.
The former alows the construction of candidates of afixed form which may lead to more
efficient testing than possible for random candidates.

4.4.1 Random search for probable primes

By the prime number theorem (Fact 2.95), the proportion of (positive) integers < x that
are primeis approximately 1/ In z. Since haf of al integers < z are even, the proportion
of odd integers < z that are prime is approximately 2/ In z. For instance, the proportion
of all odd integers < 252 that are prime is approximately 2/(512 - In(2)) ~ 1/177. This
suggests that a reasonable strategy for selecting a random k-bit (probable) primeisto re-
peatedly pick random k-bit odd integers n until oneisfound that is declared to be “prime”
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4.44

4.45

4.46

4.47

by MILLER-RABIN(n,t) (Algorithm 4.24) for an appropriate value of the security param-
eter ¢ (discussed below).

If arandom k-bit odd integer n isdivisible by asmall prime, it isless computationally
expensive to rule out the candidate n by trial division than by using the Miller-Rabin test.
Since the probability that a random integer n has a small prime divisor isrelatively large,
before applying the Miller-Rabin test, the candidate n should be tested for small divisors
below a pre-determined bound B. This can be done by dividing n by all the primes below
B, or by computing greatest common divisors of n and (pre-computed) products of several
of the primes < B. The proportion of candidate odd integers » not ruled out by this trial
divisionis[ [, p(1— %) which, by Mertens'stheorem, isapproximately 1.12/ In B (here
p ranges over prime values). For example, if B = 256, then only 20% of candidate odd
integersn passthetrial division stage, i.e., 80% are discarded before the more costly Miller-
Rabin test is performed.

Algorithm Random search for a prime using the Miller-Rabin test

RANDOM-SEARCH(k,t)
INPUT: aninteger &, and a security parameter ¢ (cf. Note 4.49).
OUTPUT: arandom k-bit probable prime.
1. Generate an odd k-bit integer n at random.
2. Usetria division to determine whether n is divisible by any odd prime < B (see
Note 4.45 for guidance on selecting B). If it isthen go to step 1.
3. If MILLER-RABIN(n,t) (Algorithm 4.24) outputs “prime” then return(n).
Otherwise, go to step 1.

Note (optimal trial division bound B) Let E denote the time for afull k-bit modular ex-
ponentiation, and let D denote the time required for ruling out one small prime as divisor
of ak-bit integer. (Thevalues E and D depend on the particular implementation of long-
integer arithmetic.) Then the trial division bound B that minimizes the expected running
time of Algorithm 4.44 for generating ak-bit primeisroughly B = E/D. A more accurate
estimate of the optimum choice for B can be obtained experimentally. The odd primes up
to B can be precomputed and stored in atable. If memory is scarce, avalue of B that is
smaller than the optimum value may be used.

Since the Miller-Rabin test does not provide a mathematical proof that a number isin-
deed prime, the number » returned by Algorithm 4.44 is a probable prime (Definition 4.5).
It isimportant, therefore, to have an estimate of the probability that n isin fact composite.

Definition The probability that RANDOM-SEARCH(k,t) (Algorithm 4.44) returns a
composite number is denoted by py ;.

Note (remarks on estimating p ;) It is tempting to conclude directly from Fact 4.25 that
Dret < (%)t. Thisreasoning is flawed (although typically the conclusion will be correct in
practice) since it does not take into account the distribution of the primes. (For example, if
all candidatesn were chosen from aset .S of composite numbers, the probability of error is
1.) Thefollowing discussion elaborates on this point. Let X represent the event that n is
composite, and let Y; denote the event than MILLER-RABIN(n,t) declares n to be prime.
Then Fact 4.25 statesthat P(Y;|X) < (4)*. What isrelevant, however, to the estimation of
Pk, isthequantity P(X|Y;). Supposethat candidatesn are drawn uniformly and randomly
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4.48

fromaset S of odd numbers, and suppose p isthe probability that » is prime (this depends
on the candidate set S). Assumeasothat 0 < p < 1. Then by Bayes' theorem (Fact 2.10):
t
pxlvy) — PEPOIY) _ POIX) 1 (1) |
P(Y;) P(Y;) p
since P(Y;) > p. Thusthe probability P(X |Y;) may beconsiderably larger than (1) if pis
small. However, the error-probability of Miller-Rabin is usually far smaller than (%)t (see
Remark 4.26). Using better estimates for P(Y;|X) and estimates on the number of k-bit
prime numbers, it has been shown that py ; is, in fact, smaller than (%)t for al sufficiently
large k. A more concrete result isthefollowing: if candidatesn are chosen at random from
the set of odd numbersin theinterval [3,z], then P(X|Y;) < (3)* for all 2 > 10%.

4

Further refinementsfor P(Y;| X') allow thefollowing explicit upper bounds on py, ; for
variousvauesof k and ¢. °

Fact (some upper bounds on py, ; in Algorithm4.44)
(i) pr1 < k242~ % for k > 2.
(ii) pr, < k3/220471/242~ " for (t = 2,k > 88) or (3 < t < k/9, k > 21).
(i) pry < 5ok275 + LE15/427k/272t 4 12k2-k/4=3t for /9 < t < k/4,k > 21.
(V) iy < 2E'5/427F/2"2t fort > k /4, k > 21.

For example, if k = 512 and ¢ = 6, then Fact 4.48(ii) gives ps12,6 < ()3, Inother
words, the probability that RANDOM-SEARCH(512,6) returnsa512-bit compositeinteger
is less than (%)88. Using more advanced techniques, the upper bounds on py, ; given by
Fact 4.48 have beenimproved. These upper boundsarisefrom complicated formulagwhich
are not given here. Table 4.3 lists some improved upper bounds on py, ; for some sample
valuesof k and t. Asan example, the probability that RANDOM-SEARCH(500,6) returns
a composite number is < (%)92. Notice that the values of p; ; implied by the table are

considerably smaller than ()" = (3)2".

t
k 1 2 3 4 5 6 7 8 9 10

100 5 14 20 25 29 33 36 39 41 44
150 8 20 28 34 39 43 47 51 54 57
200 | 11 25 34 41 47 52 57 61 65 69
250 | 14 29 39 47 54 60 65 70 75 79
300 | 19 33 44 53 60 67 73 78 83 88
350 | 28 38 48 58 66 73 80 86 91 97
400 | 37 46 55 63 72 80 87 93 99 105
450 | 46 54 62 70 78 85 93 100 106 112
500 | 56 63 T0 78 85 92 99 106 113 119
550 | 65 72 79 86 93 100 107 113 119 126
600 | 75 82 88 95 102 108 115 121 127 133

Table 4.3: Upper bounds on py,+ for sample valuesof k£ and ¢. An entry j corresponding to & and ¢
impliespx+ < (3)7.

5The estimates of Pk, Presented in the remainder of this subsection were derived for the situation where Al-
gorithm 4.44 does not use trial division by small primes to rule out some candidates . Sincetrial division never
rules out a prime, it can only give a better chance of rejecting composites. Thus the error probability py, . might
actually be even smaller than the estimates given here.
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4.49

4.50

451

Note (controllingtheerror probability) In practice, oneisusually willing to tolerate an er-
ror probability of (%)80 when using Algorithm 4.44 to generate probable primes. For sam-
ple values of k, Table 4.4 lists the smallest value of ¢ that can be derived from Fact 4.48
for which p;, ; < (%)80. For example, when generating 1000-bit probable primes, Miller-
Rabin with ¢ = 3 repetitions suffices. Algorithm 4.44 rules out most candidates n either
by tria division (in step 2) or by performing just one iteration of the Miller-Rabin test (in
step 3). For thisreason, the only effect of selecting alarger security parameter ¢ on the run-
ning time of the algorithmwill likely beto increase thetimerequired in thefinal stagewhen
the (probable) primeis chosen.

Lkl e] [ k[e] [ k]
100 [ 27| [500]6 900
150 | 18 | | 550 950
200 | 15 | | 600 1000
250 | 12 | | 650 1050
300 | 9 700 1100
350 | 8 750 1150
400 | 7| | 800 1200
150 | 6| | 850 1250

k]
1300
1350
1400
1450
1500
1550
1600
1650

k]
1700
1750
1800
1850
1900
1950
2000
2050

SCRN NGNS
W W W W W W w W=
DN NN DN N~
NN NN N N~

Table 4.4: For sample k, the smallest ¢ from Fact 4.48 is given for which py, . < (%)%.

Remark (Miller-Rabin test with base a = 2) The Miller-Rabin test involves exponenti-
ating the base a; this may be performed using the repeated square-and-multiply algorithm
(Algorithm 2.143). If a = 2, then multiplication by a isasimple procedure relative to mul-
tiplying by a in general. One optimization of Algorithm 4.44 is, therefore, to fix the base
a = 2 whenfirst performing the Miller-Rabin test in step 3. Since most composite numbers
will fail the Miller-Rabin test with base a = 2, this modification will lower the expected
running time of Algorithm 4.44.

Note (incremental search)

(i) An alternative technique to generating candidates n at random in step 1 of Algo-
rithm 4.44 istofirst select arandom &-bit odd number nq, and then test the s numbers
n=mng,ng+2,n0+4,... ,n9+2(s— 1) for primaity. If all these s candidatesare
found to be composite, thealgorithmissaid to havefailed. If s = ¢-In 2% wherecisa
constant, the probability g, ; s that thisincremental search variant of Algorithm 4.44

returns a composite number has been shown to be less than §k32~ * for some con-
stant §. Table4.5 givessomeexplicit boundson thiserror probability for & = 500 and
t < 10. Under reasonable number-theoretic assumptions, the probability of the algo-
rithm failing has been shown to be less than 2e~2¢ for large k (here, e ~ 2.71828).

(i) Incremental search has the advantage that fewer random bits are required. Further-
more, the trial division by small primesin step 2 of Algorithm 4.44 can be accom-
plished very efficiently as follows. First the values R[p] = ng mod p are computed
for each odd prime p < B. Each time2 is added to the current candidate, the values
inthetable R are updated as R[p]+(R[p] + 2) mod p. The candidate passesthetrial
division stageif and only if none of the R[p] values equal 0.

(iii) If B islarge, an aternative method for doing thetrial divisionisto initialize atable
S[i]«0for 0 < i < (s — 1); theentry S[¢] corresponds to the candidate ng + 2i.
For each odd primep < B, ng mod p is computed. Let j be the smallest index for
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t

c 1 2 3 4 5 6 7 8 9 10

17 37 51 63 72 81 89 96 103 110
5113 32 46 58 68 77 85 92 99 105

10| 11 30 44 56 66 75 83 90 97 103

Table 4.5: Upper bounds on the error probability of incremental search (Note 4.51) for & = 500
and sample values of ¢ and ¢. An entry j corresponding to ¢ and ¢ implies gsoo,t,s < (%)J, where
s=c-1n2%0,

which (ng + 27) =0 (mod p). Then S[j] and each p*" entry after it aresetto 1. A
candidate ny + 2¢ then passes the trial division stage if and only if S[i] = 0. Note
that the estimate for the optimal trial division bound B given in Note 4.45 does not
apply here (nor in (ii)) since the cost of division is amortized over all candidates.

4.4.2 Strong primes

The RSA cryptosystem (§8.2) uses amodulus of the form n = pq, where p and ¢ are dis-
tinct odd primes. The primes p and ¢ must be of sufficient size that factorization of their
product is beyond computational reach. Moreover, they should be random primes in the
sensethat they be chosen as afunction of arandom input through a process defining a pool
of candidates of sufficient cardinality that an exhaustive attack isinfeasible. In practice, the
resulting primes must also be of a pre-determined bitlength, to meet system specifications.
The discovery of the RSA cryptosystem led to the consideration of several additional con-
straintson the choi ce of p and g which are necessary to ensure theresulting RSA system safe
from cryptanalytic attack, and the notion of a strong prime (Definition 4.52) was defined.
These attacks are described at length in Note 8.8(iii); as noted there, it is now believed that
strong primes offer little protection beyond that offered by random primes, since randomly
selected primes of the sizestypically used in RSA moduli today will satisfy the constraints
with high probability. On the other hand, they are no less secure, and require only minimal
additional running time to compute; thus, there is little real additional cost in using them.

4.52 Definition A prime number p issaid to be astrong primeif integersr, s, and ¢ exist such
that the following three conditions are satisfied:
(i) p — 1 hasalarge prime factor, denoted r;
(ii) p + 1 hasalarge prime factor, denoted s; and
(iii) » — 1 hasalarge prime factor, denoted ¢.

In Definition 4.52, a precise qualification of “large” depends on specific attacksthat should
be guarded against; for further details, see Note 8.8(iii).
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4.53 Algorithm Gordon’s algorithm for generating a strong prime

SUMMARY: astrong prime p is generated.

1. Generatetwo largerandom primes s and ¢ of roughly equal bitlength (see Note 4.54).

2. Select an integer . Find the first prime in the sequence 2it + 1, for ¢ = ig,49 +
1,79 + 2, ... (see Note 4.54). Denctethisprimeby r = 2it + 1.

3. Compute pg = 2(s" 2 mod r)s — 1.

4. Select aninteger jo. Find thefirst primein the sequence pg + 2jrs, for j = jo, jo +
1,70 + 2,... (see Note 4.54). Denote this primeby p = pg + 2jrs.

5. Return(p).

Justification. To see that the prime p returned by Gordon’s algorithm is indeed a strong
prime, observefirst (assuming » # s) that s"~! =1 (mod r); thisfollows from Fermat's
theorem (Fact 2.127). Hence, pp = 1 (mod r) and pg = —1 (mod s). Finaly (cf. Defi-
nition 4.52),

(i) p—1=po+2jrs—1=0 (mod r), and hencep — 1 hasthe prime factor r;
(i) p+1=po+2jrs+1=0 (mod s), and hencep + 1 hasthe prime factor s; and
(iii) » —1=2it =0 (mod t), and hencer — 1 has the prime factor ¢.

4.54 Note (implementing Gordon's algorithm)

(i) The primes s and ¢ required in step 1 can be probable primes generated by Algo-
rithm 4.44. The Miller-Rabin test (Algorithm 4.24) can be used to test each candidate
for primality in steps 2 and 4, after ruling out candidates that are divisible by asmall
primelessthan somebound B. See Note 4.45 for guidance on selecting B. Sincethe
Miller-Rabin test is a probabilistic primality test, the output of this implementation
of Gordon’'sagorithm is a probable prime.

(i) By carefully choosing the sizes of primes s, ¢ and parameters i, jo, one can control
the exact bitlength of the resulting prime p. Note that the bitlengths of » and s will
be about half that of p, while the bitlength of ¢ will be slightly less than that of r.

4.55 Fact (runningtimeof Gordon'salgorithm) If the Miller-Rabintest isthe primality test used
insteps1, 2, and 4, the expected time Gordon’ sal gorithmtakesto find astrong primeisonly
about 19% more than the expected time Algorithm 4.44 takes to find arandom prime.

4.4.3 NIST method for generating DSA primes

Some public-key schemes require primes satisfying various specific conditions. For exam-
ple, the NIST Digital Signature Algorithm (DSA of §11.5.1) requires two primes p and ¢
satisfying the following three conditions:
(i) 21 < q < 2190 that is, ¢ is a160-bit prime;

(i) 271 < p < 2T for aspecified L, where L = 512 + 641 for some 0 < [ < 8; and

(iii) ¢ dividesp — 1.
This section presents an algorithm for generating such primes p and ¢. In the following,
H denotes the SHA-1 hash function (Algorithm 9.53) which maps bitstrings of bitlength
< 254 to 160-bit hash-codes. Where required, an integer x intherange 0 < = < 29 whose
binary representationisz = z, 129! 4+ z, 22972 + -+ - + 222 + 712 + z( should be
converted to the g-bit sequence (z,—1z4—2 - - - 22120), and vice versa
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4.56 Algorithm NIST method for generating DSA primes
INPUT: aninteger 7,0 <1 < 8.
OUTPUT: a160-bit prime ¢ and an L-bit prime p, where L = 512 4 64/ and ¢|(p — 1).

1. Compute L = 512 + 641. Using long division of (L — 1) by 160, find n, b such that
L —1=160n+ b, where0 < b < 160.
2. Repeat the following:
2.1 Choose arandom seed s (not necessarily secret) of bitlength g > 160.
2.2 ComputeU = H(s)®H ((s+ 1) mod 29).
2.3 Form ¢ from U by setting to 1 the most significant and least significant bits of
U. (Notethat ¢ isa 160-bit odd integer.)
2.4 Test ¢ for primality using MILLER-RABIN(g,t) for ¢ > 18 (see Note 4.57).
Until ¢ isfound to be a (probable) prime.
3. Seti«0, j«2.
4. While ¢ < 4096 do the following:
4.1 For k from 0 to » do the following: set Vi< H ((s + j + k) mod 29).
4.2 For theinteger W defined below, let X = W + 21, (X isan L-bit integer.)

W = Vi + V32160 4 15,2320 4 ...y, ,2160(n-1) | (V;, mod 26)216071.
4.3 Computec = X mod 2gandsetp = X —(c—1). (Notethatp =1 (mod 2q).)
4.4 1f p > 21 then do the following:
Test p for primality using MILLER-RABIN(p,t) for t > 5 (seeNote 4.57).
If p isa(probable) prime then return(q,p).
45 Seti<—i+1,jj+n+1.
5. Goto step 2.

4.57 Note (choice of primality test in Algorithm 4.56)

(i) The FIPS 186 document where Algorithm 4.56 was originally described only speci-
fiesthat arobust primality test be usedin steps 2.4 and 4.4, i.e., aprimality test where
the probability of a composite integer being declared prime is at most (%)80. If the
heuristic assumption is made that ¢ isarandomly chosen 160-hbit integer then, by Ta-
ble4.4, MILLER-RABIN(g,18) isarobust test for the primality of ¢. If p isassumed
to be arandomly chosen L-bit integer, then by Table 4.4, MILLER-RABIN(p,5) is
arobust test for the primality of p. Since the Miller-Rabin test is a probabilistic pri-
mality test, the output of Algorithm 4.56 is a probable prime.

(if) To improve performance, candidate primes ¢ and p should be subjected to trial divi-
sion by all odd primeslessthan some bound B beforeinvoking the Miller-Rabin test.
See Note 4.45 for guidance on selecting B.

4.58 Note (“weak’ primescannot beintentionally constructed) Algorithm 4.56 hasthe feature
that the random seed s is not input to the prime number generation portion of the algorithm
itself, but rather to an unpredictable and uncontrollable randomization process (steps 2.2
and 4.1), the output of whichisused asthe actual random seed. This precludesmanipulation
of theinput seed to the primenumber generation. If the seed s and counter : aremade public,
then anyone can verify that ¢ and p were generated using the approved method. Thisfeature
preventsacentral authority who generatesp and g as system-wide parametersfor useinthe
DSA from intentionally constructing “weak” primes ¢ and p which it could subsequently
exploit to recover other entities' private keys.
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4.4.4 Constructive techniques for provable primes

4.59

4.60

461

Maurer’s algorithm (Algorithm 4.62) generates random provable primes that are almost
uniformly distributed over the set of all primes of a specified size. The expected time for
generatingaprimeisonly dightly greater than that for generating a probabl e prime of equal
size using Algorithm 4.44 with security parameter ¢ = 1. (In practice, one may wish to
chooset > 1 in Algorithm 4.44; cf. Note 4.49.)

The main idea behind Algorithm 4.62 is Fact 4.59, which is a dlight modification of
Pocklington’stheorem (Fact 4.40) and Fact 4.41.

Fact Letn > 3 beanodd integer, and supposethat n = 1+ 2Rq where ¢ isan odd prime.
Suppose further that ¢ > R.
(i) If there exists an integer a satisfyinga™ ! =1 (mod n) and ged(a?? — 1,n) = 1,
then n is prime.
(i) If nisprime, the probability that arandomly selected basea, 1 < a < n—1, satisfies
a"!'=1 (mod n)and gcd(a®2 — 1,n) = 1is(1 — 1/q).

Algorithm 4.62 recursively generates an odd prime ¢, and then choosesrandom integers R,
R < ¢, until n = 2Rq + 1 can be proven prime using Fact 4.59(i) for some base a. By
Fact 4.59(ii) the proportion of such basesis1 — 1/¢ for primen. On the other hand, if . is
composite, then most bases a will fail to satisfy the conditiona™ ! =1 (mod n).

Note (description of constants ¢ and m in Algorithm 4.62)

(i) The optimal value of the constant ¢ defining the trial division bound B = ck? in
step 2 depends on the implementation of long-integer arithmetic, and is best deter-
mined experimentally (cf. Note 4.45).

(ii) The constant m = 20 ensuresthat I is at least 20 bits long and hence the interval
fromwhich R is selected, namely [I + 1, 21], is sufficiently large (for the values of
k of practical interest) that it most likely contains at least onevalue R for whichn =
2Rq + lisprime.

Note (relativesizer of ¢ with respect to n in Algorithm 4.62) The relative size r of g with
respect to n isdefined to be r = 1g ¢/ lg n. In order to assure that the generated prime n is
chosen randomly with essentially uniform distribution from the set of all £-bit primes, the
size of the prime factor ¢ of n — 1 must be chosen according to the probability distribution
of thelargest primefactor of arandomly selected k-bit integer. Since ¢ must be greater than
Rinorder for Fact 4.59 to apply, therelative size r of g isrestricted to being in the interval
[2,1]. It can be deduced from Fact 3.7(i) that the cumulative probability distribution of the
relative size r of the largest prime factor of alarge random integer, given that r is at least
2.is(1+1gr) for 2 <r < 1. Instep 4 of Algorithm 4.62, the relative size r is generated
according to this distribution by selecting arandom number s € [0, 1] and then setting r =
25~1 If k < 2m then r is chosen to be the smallest permissible value, namely % in order
to ensure that the interval from which R is selected is sufficiently large (cf. Note 4.60(ii)).
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4.62 Algorithm Maurer’s algorithm for generating provable primes

PROVABLE_PRIME(k)
INPUT: apositive integer k.
OUTPUT: a k-bit prime number n.
1. (If kissmall, then test randomintegersby trial division. Atable of small primesmay
be precomputed for this purpose.)
If &£ < 20 then repeatedly do the following:
1.1 Select arandom k-bit odd integer n.
1.2 Usetria division by al primeslessthan n to determine whether n is prime.
1.3 If n isprime then return(n).
2. Set c«+—0.1 and m<«—20 (see Note 4.60).
(Trial division bound) Set B+c - k2 (see Note 4.60).
4. (Generater, the size of g relative to n — see Note 4.61) If £ > 2m then repeatedly
do the following: select arandom number s in the interval [0, 1], set 7«21, until
(k —rk) > m. Otherwise (i.e. k < 2m), set r<0.5.

w

5. Compute g+ PROVABLE PRIME(|7 - k| + 1).
6. Set I+[2F1/(2q)].
7. success«—0.
8. While (success = 0) do the following:
8.1 (select a candidate integer n) Select arandom integer R in the interval [I +
1,21 and set n«2Rq + 1.
8.2 Usetria divisionto determinewhether n isdivisibleby any primenumber < B.
If it is not then do the following:
Select arandom integer a in theinterval [2,n — 2].
Compute b<—a™ ! mod n.
If b = 1 then do the following:
Compute b<—a*? mod n and d<+ ged(b — 1,n).
If d = 1 then success«1.
9. Return(n).

4.63 Note (improvementsto Algorithm 4.62)

(i) A speedup can be achieved by using Fact 4.42 instead of Fact 4.59(i) for proving
n = 2Rq+ 1 primein step 8.2 of Maurer’salgorithm — Fact 4.42 only requiresthat
q be greater than 2'n.

(i) If acandidaten passesthetria division (in step 8.2), then aMiller-Rabin test (Algo-
rithm 4.24) with the single base a = 2 should be performed on n; only if n passes
thistest should the attempt to proveits primality (the remainder of step 8.2) be under-
taken. Thisleadsto afaster implementation due to the efficiency of the Miller-Rabin
test with asingle base a = 2 (cf. Remark 4.50).

(iii) Step 4 requires the use of real number arithmetic when computing 2°~!. To avoid
these computations, one can precompute and storealist of such valuesfor aselection
of random numbers s € [0, 1].

4.64 Note (provableprimesvs. probable primes) Probable primes are advantageous over prov-

able primes in that Algorithm 4.44 for generating probable primes with ¢ = 1 is dightly
faster than Maurer’s algorithm. Moreover, the latter requires more run-time memory due
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to itsrecursive nature. Provable primes are preferable to probable primes in the sense that
the former have zero error probability. In any cryptographic application, however, there
is always a non-zero error probability of some catastrophic failure, such as the adversary
guessing a secret key or hardware failure. Since the error probability of probable primes
can be efficiently brought down to acceptably low levels (see Note 4.49 but note the depen-
dence on t), there appears to be no reason for mandating the use of provable primes over
probable primes.

4.5 Irreducible polynomials over Z,

Recall (Definition 2.190) that a polynomial f(z) € Zp[x] of degreem > 1 issaid to be
irreducible over Z,, if it cannot be written as a product of two polynomiasin Z,[x] each
having degree less than m. Such apolynomial f(z) can be used to represent the elements
of thefinite field Fpm asF,m = Z,[z]/(f(z)), the set of all polynomialsin Z,|[z] of de-
greelessthan m wherethe addition and multiplication of polynomialsis performed modulo
f(z) (see§2.6.3). Thissection presentstechniquesfor constructing irreducible polynomials
over Z,, wherep isaprime. The characteristic two finite fieldsF2- are of particular inter-
est for cryptographic applications because the arithmetic in these fields can be efficiently
performed both in software and in hardware. For this reason, additional attention is given
to the special case of irreducible polynomials over Z.

The arithmetic in finite fields can usually be implemented more efficiently if theirre-
ducible polynomial chosen hasfew non-zero terms. Irreducibletrinomials, i.e., irreducible
polynomials having exactly three non-zero terms, are considered in §4.5.2. Primitive poly-
nomials, i.e., irreducible polynomials f () of degreem in Z,,[x] for which x isagenerator
of )., the multiplicative group of thefinitefield F),» = Z,[z]/(f(z)) (Definition 2.228),
arethetopic of §4.5.3. Primitive polynomialsare also used in the generation of linear feed-
back shift register sequences having the maximum possible period (Fact 6.12).

4.5.1 Irreducible polynomials

If f(z) € Zy[z] isirreducibleover Z, and a isanon-zeroelementinZ,,, thena- f () isalso
irreducible over Z,,. Hence it suffices to restrict attention to monic polynomiasin Zy|[z],
i.e., polynomials whose leading coefficient is 1. Observe also that if f(z) isanirreducible
polynomial, then its constant term must be non-zero. In particular, if f(z) € Zs[z], then
its constant term must be 1.

Thereisaformulafor computing exactly the number of monic irreducible polynomi-
asin Z,[z] of afixed degree. The Mdbius function, which is defined next, is used in this
formula

4.65 Definition Let m be apositive integer. The Mobius function . is defined by

1, ifm=1,
u(im) =< 0, if m isdivisible by the square of aprime,
(—=1)F, if misthe product of & distinct primes.

4.66 Example (Mobiusfunction) The following table gives the values of the Mdbius function
w(m) for thefirst 10 values of m:
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pm) 1] -1 —-1]0] -1]|1]—-1]0]0] 1

O

4.67 Fact (number of monicirreducible polynomials) Let p beaprimeand m apositiveinteger.

(i) Thenumber IV,(m) of monicirreducible polynomials of degreem inZ,[x] isgiven
by the following formula:

Np(m) = %Zu(d)pm/ 9,
dl

where the summation ranges over al positive divisors d of m.
(ii) Theprobability of arandom monic polynomial of degreem inZ,[x] beingirreducible
over Z, isroughly . More specifically, the number N,,(m) satisfies

1 < Ny(m) 1
2m — p™ T m
Testing irreducibility of polynomiasin Z,[x] is significantly simpler than testing pri-
mality of integers. A polynomial can be tested for irreducibility by verifying that it has no
irreducible factors of degree < | 2t |. Thefollowing result leadsto an efficient method (Al-
gorithm 4.69) for accomplishing this.

4.68 Fact Letpbeaprimeand let k& be apositive integer.
(i) The product of al monic irreducible polynomias in Z,[x] of degree dividing k is
equal to 2" — 1.
(i) Let f(z) beapolynomial of degreem in Z,[xz]. Then f(z) isirreducible over Z,, if
and only if gcd(f(:v),xpi —x) =1foreachi, 1 <i < [%F].

4.69 Algorithm Testing a polynomial for irreducibility

INPUT: aprime p and amonic polynomia f(x) of degreem in Z|[z].
OUTPUT: an answer to the question: “Is f(z) irreducible over Z,?’
1. Setu(z)+=z.
2. Forifrom1to | 4| do thefollowing:
2.1 Computeu(z)+u(z)? mod f(x) using Algorithm 2.227. (Notethat u(z) isa
polynomial in Z,[z] of degree less than m.)
2.2 Computed(z) = ged(f(x), u(z) — z) (using Algorithm 2.218).
2.3 If d(z) # 1 then return(“reducible”).
3. Return(“irreducible”).

Fact 4.67 suggests that one method for finding an irreducible polynomial of degree m
in Zy[z] is to generate a random monic polynomial of degree m in Zy|[z], test it for irre-
ducibility, and continue until an irreducible one is found (Algorithm 4.70). The expected
number of polynomialsto be tried before an irreducible one is found is approximately m.
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4.70 Algorithm Generating a random monic irreducible polynomial over Z,,

INPUT: aprime p and a positive integer m.
OUTPUT: amonic irreducible polynomial f(x) of degreem in Zy|[z].
1. Repeat the following:

1.1 (Generate a random monic polynomial of degree m in Z,|x])
Randomly select integersag, ai, as, . . . , a1 between 0 and p — 1 with ay #
0. Let f(z) bethepolynomia f(z) = 2™ +a,, 12™ 1+ - -+ax®+ayz+ay.
1.2 Use Algorithm 4.69 to test whether f(x) isirreducible over Z,.
Until f(z) isirreducible.
2. Return(f(z)).

Itisknownthat the expected degree of theirreduciblefactor of |east degree of arandom
polynomial of degreem inZ,[x] is O(lg m). Hence for each choice of f(x), the expected
number of times steps 2.1 — 2.3 of Algorithm 4.69 are iterated is O(1g m). Each iteration
takes O((lg p)m?) Z,-operations. These observations, together with Fact 4.67(ii), deter-
mine the running time for Algorithm 4.70.

4.71 Fact Algorithm 4.70 has an expected running time of O(m?(lg m)(lg p)) Z,-operations.

Given oneirreducible polynomial of degreem over Z,, Note 4.74 describes amethod,
which ismore efficient than Algorithm 4.70, for randomly generating additional such poly-
nomials.

4.72 Definition LetF, beafinitefield of characteristic p, and let oo € F,;. A minimum polyno-
mial of o over Z, isamonic polynomial of least degreein Zj,[z] having « as aroot.

4.73 Fact LetF, beafinitefield of order ¢ = p™, andleta € F,.

(i) Theminimum polynomial of a over Z,, denoted m,, (x), is unique.
(ii) mq(z) isirreducible over Z,.
(iii) The degree of m(x) isadivisor of m.
(iv) Let ¢ be the smallest positive integer such that o?' = a. (Note that such at exists
since, by Fact 2.213, o?™ = a.) Then
t—1

me(z) = H(a: - api). 4.1

=0

4.74 Note (generating new irreducible polynomials from a given one) Suppose that f(y) isa
given irreducible polynomial of degree m over Z,,. Thefinitefield F,~ can then be repre-
sented asFp,m = Zy[y]/(f(y)). A random monic irreducible polynomial of degreem over
Z,, can be efficiently generated as follows. First generate arandom element o € F,» and
then, by repeated exponentiation by p, determine the smallest positive integer ¢ for which
of' = . Ift < m, then generate anew random element « € Fp- and repest; the probabil-
ity that ¢ < m isknown to be at most (1gm)/q"™/2. If indeed t = m, then compute m,, ()
using the formula (4.1). Then m,(z) isarandom monic irreducible polynomial of degree
minZy[z]. Thismethod hasan expected runningtime of O(m?3(lg p)) Z,-operations (com-
pare with Fact 4.71).
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4.5.2 Irreducible trinomials

If apolynomial f(z) inZz[x] hasan even number of non-zeroterms, then f(1) = 0, whence
(x + 1) isafactor of f(x). Hence, the smallest number of non-zero terms an irreducible
polynomial of degree > 2 in Z2[z] can haveisthree. Anirreducibletrinomial of degree m
in Zy [z] must be of theform 2™ + 2 + 1, where 1 < k < m — 1. Choosing anirreducible
trinomia f(z) € Z»[z] of degree m to represent the elements of the finite field Fom =
Zs[z]/(f(x)) can lead to a faster implementation of the field arithmetic. The following
facts are sometimes of use when searching for irreducible trinomials.

4.75 Fact Let m beapositiveinteger, and let £ denote an integer in theinterval [1,m — 1].
(i) If thetrinomial ™ + z* + 1 isirreducible over Z, then soisa™ + 2™ % + 1.
(ii) If m =0 (mod 8), thereisnoirreducible trinomial of degree m in Zy[x].
(iii) Supposethat eitherm = 3 (mod 8) orm =5 (mod 8). Thenanecessary condition
for z™ + z* + 1 to be irreducible over Z, isthat either k or m — k must be of the
form 2d for some positive divisor d of m.

Tables4.6 and 4.7 list anirreducible trinomial of degreem over Z, for eachm < 1478
for which such atrinomial exists.

4.5.3 Primitive polynomials

Primitive polynomials were introduced at the beginning of §4.5. Let f(z) € Z,[z] be an
irreduciblepolynomial of degreem. If thefactorization of theinteger p™ —1 isknown, then
Fact 4.76 yields an efficient algorithm (Algorithm 4.77) for testing whether or not f(z) is
a primitive polynomial. If the factorization of p™ — 1 is unknown, there is no efficient
algorithm known for performing thistest.

4.76 Fact Letp beaprimeand let the distinct prime factorsof p™ — 1 bery,rs,... ,r:. Then
anirreducible polynomia f(z) € Z,[x] is primitiveif and only if for each i, 1 < i < ¢
2PV £ 1 (mod f(x)).
(That is, z isan element of order p™ — 1 inthefield Z,[z]/(f(x)).)

4.77 Algorithm Testing whether an irreducible polynomial is primitive

INPUT: aprime p, apositiveinteger m, the distinct prime factorsry, ra, ... ,r; of p™ — 1,
and amonic irreducible polynomial f(x) of degreem inZ,|x].
OUTPUT: an answer to the question: “Is f(x) a primitive polynomia?’
1. For ¢ from 1to ¢ do the following:
1.1 Computel(z) = " ~1/™ mod f(z) (using Algorithm 2.227).
1.2 If I(z) = 1 then return(“ not primitive”).
2. Return(“primitive”).

There are precisely ¢(p™ — 1)/m monic primitive polynomials of degreem inZ,,[x]
(Fact 2.230), where ¢ is the Euler phi function (Definition 2.100). Since the number of
monic irreducible polynomialsof degreem inZ,[x] isroughly p™ /m (Fact 4.67(ii)), it fol-
lows that the probability of a random monic irreducible polynomial of degree m in Z,,[x]
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[m] k[ m[ k]| m] K[ m[ k]| m] K[ m[ k]| m][ k|
2 1 93 2 193 15 || 295 48 || 402 | 171 || 508 9 || 618 | 295
3 1 94 | 21 194 87 || 297 5 || 404 65 || 510 69 || 620 9
4 1 9% | 1 196 3 || 300 5 || 406 | 141 || 511 10 || 622 | 297
5 2 97 6 198 9 || 302 41 || 407 71 || 513 26 || 623 68
6 1 98 | 11 199 34 || 303 1 || 409 87 || 514 67 || 625 | 133
7 1 100 | 15 || 201 14 || 305 | 102 || 412 | 147 || 516 21 || 626 | 251
9 1 102 | 29 || 202 55 || 308 15 || 414 13 || 518 33 || 628 | 223
10 3 103 9 || 204 27 || 310 93 || 415 | 102 || 519 79 || 631 | 307
1 2 105 4 || 207 43 || 313 79 || 417 | 107 || 521 32 || 633 | 101
12 3 106 | 15 || 209 6 || 314 15 || 418 | 199 || 522 39 || 634 39
14 5 108 | 17 || 210 7 || 316 63 || 420 7 || 524 | 167 || 636 | 217
15 1 110 | 33 || 212 | 105 || 318 45 || 422 | 149 || 526 97 || 639 16
17 3 111 | 10 || 214 73 || 319 36 || 423 25 || 527 47 || 641 1
18 3 113 9 || 215 23 || 321 31 || 425 12 || 529 42 || 642 | 119
20 3 118 | 33 || 217 45 || 322 67 || 426 63 || 532 1 || 646 | 249
21 2 119 8 || 218 11 || 324 51 || 428 | 105 || 534 | 161 || 647 5
22 1 121 | 18 || 220 7 || 327 34 || 431 | 120 || 537 94 || 649 37
23 5 123 2 || 223 33 || 329 50 || 433 33 || 538 | 195 || 650 3
25 3 124 | 19 || 225 32 || 330 99 || 436 | 165 || 540 9 || 651 14
28 1 126 | 21 || 228 | 113 || 332 89 || 438 65 || 543 16 || 652 93
29 2 127 1| 231 26 || 333 2 || 439 49 || 545 | 122 || 654 33
30 1 129 5 || 233 74 || 337 55 || 441 7 || 550 | 193 || 655 88
31 3 130 3 || 234 31 || 340 45 || 444 81 || 551 | 135 || 657 38
33 | 10 132 | 17 || 236 5 || 342 | 125 || 446 | 105 || 553 39 || 658 55
34 7 134 | 57 || 238 73 || 343 75 || 447 73 || 556 | 153 || 660 11
35 2 135 | 11 || 239 36 || 345 22 || 449 | 134 || 558 73 || 662 21
36 9 137 | 21 || 241 70 || 346 63 || 450 47 || 559 34 || 663 | 107
39 4 || 140 | 15 || 242 95 || 348 | 103 || 455 38 || 561 71 || 665 33
41 3 142 | 21 || 244 | 111 || 350 53 || 457 16 || 564 | 163 || 668 | 147
42 7 145 | 52 || 247 82 || 351 34 || 458 | 203 || 566 | 153 || 670 | 153
44 5 146 | 71 || 249 35 || 353 69 || 460 19 || 567 28 || 671 15
46 1 147 | 14 || 250 | 103 || 354 99 || 462 73 || 569 77 || 673 28
47 5 148 | 27 || 252 15 || 358 57 || 463 93 || 570 67 || 676 31
49 9 150 | 53 || 253 46 || 359 68 || 465 31 || 574 13 || 679 66
52 3 151 3 || 255 52 || 362 63 || 468 27 || 575 | 146 || 682 | 171
54 9 153 1| 257 12 || 364 9 || 470 9 || 577 25 || 684 | 209
55 7 154 | 15 || 258 71 || 366 29 || 471 1 || 580 | 237 || 686 | 197
57 4 || 155 | 62 || 260 15 || 367 21 || 473 | 200 || 582 85 || 687 13
58 | 19 156 9 || 263 93 || 369 91 || 474 | 191 || 583 | 130 || 689 14
60 1 159 | 31 || 265 42 || 370 | 139 || 476 9 || 585 88 || 690 79
62 | 29 161 | 18 || 266 47 || 372 | 111 || 478 | 121 || 588 35 || 692 | 299
63 1 162 | 27 || 268 25 || 375 16 || 479 | 104 || 590 93 || 694 | 169
65 | 18 166 | 37 || 270 53 || 377 41 || 481 | 138 || 593 86 || 695 | 177
66 3 167 6 || 271 58 || 378 43 || 484 | 105 || 594 19 || 697 | 267
68 9 169 | 34 || 273 23 || 380 47 || 486 81 || 596 | 273 || 698 | 215
71 6 170 | 11 || 274 67 || 382 81 || 487 94 || 599 30 || 700 75

73 | 25 172 1| 276 63 || 383 90 || 489 83 || 601 | 201 || 702 37
74 | 35 174 | 13 || 278 5 ]| 385 6 || 490 | 219 || 602 | 215 || 705 17
76 | 21 175 6 || 279 5 || 386 83 || 492 7 || 604 | 105 || 708 15
79 9 177 8 || 281 93 (| 388 | 159 || 494 17 || 606 | 165 711 92
81 4 || 178 | 31 || 282 35 || 390 9 || 495 76 || 607 | 105 || 713 41
84 5 180 3 || 284 53 || 391 28 || 497 78 || 609 31 || 714 23
86 | 21 182 | 81 || 286 69 || 393 7 || 498 | 155 || 610 | 127 || 716 | 183
87 | 13 183 | 56 || 287 71 || 394 | 135 || 500 27 || 612 81 || 718 | 165
89 | 38 185 | 24 || 289 21 || 396 25 || 503 3 || 614 45 || 719 | 150
90 | 27 186 | 11 || 292 37 || 399 26 || 505 | 156 || 615 | 211 || 721 9
92 | 21 191 9 || 294 33 || 401 | 152 || 506 23 || 617 | 200 || 722 | 231

Table 4.6: Irreducible trinomialsz™ + z* + 1 over Z. For eachm, 1 < m < 722, for which an
irreducibletrinomial of degree m in Z»[z] exists, the tableliststhe smallest & for which 2™ 4 2% 4-1
isirreducible over Z,.
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[m] Rl m[ k]| m] kK[| m[ k]| m] kK[| m[ k]| m] k|
724 | 207 || 831 | 49 937 | 217 || 1050 | 159 || 1159 | 66 || 1265 | 119 || 1374 | 609
726 5| 833 | 149 938 | 207 || 1052 | 291 || 1161 | 365 || 1266 7 || 1375 | 52
727 | 180 || 834 | 15 942 | 45 || 1054 | 105 || 1164 | 19 || 1268 | 345 || 1377 | 100
729 | 58 || 838 | 61 943 | 24 || 1055 | 24 || 1166 | 189 || 1270 | 333 || 1380 | 183
730 | 147 || 839 | 54 945 | 77 || 1057 | 198 || 1167 | 133 || 1271 | 17 || 1383 | 130
732 | 343 || 841 | 144 948 | 189 || 1058 | 27 || 1169 | 114 || 1273 | 168 || 1385 | 12
735 | 44 || 842 | 47 951 | 260 || 1060 | 439 || 1170 | 27 || 1276 | 217 || 1386 | 219
737 5 || 844 | 105 953 | 168 || 1062 | 49 || 1174 | 133 || 1278 | 189 || 1388 | 11
738 | 347 || 845 2 954 | 131 || 1063 | 168 || 1175 | 476 || 1279 | 216 || 1390 | 129
740 | 135 || 846 | 105 956 | 305 || 1065 | 463 || 1177 | 16 || 1281 | 229 || 1391 3
742 | 85 || 847 | 136 959 | 143 || 1071 7 || 1178 | 375 || 1282 | 231 || 1393 | 300
743 | 90 || 849 | 253 961 | 18 || 1078 | 361 || 1180 | 25 || 1284 | 223 || 139% | 97
745 | 258 || 850 | 111 964 | 103 || 1079 | 230 || 1182 | 77 || 1286 | 153 || 1398 | 601
746 | 351 || 852 | 159 966 | 201 || 1081 | 24 || 1183 | 87 || 1287 | 470 || 1399 | 55
748 | 19 || 855 | 29 967 | 36 || 1082 | 407 || 1185 | 134 || 1289 | 99 || 1401 | 92
750 | 309 || 857 | 119 969 | 31 || 1084 | 189 || 1186 | 171 || 1294 | 201 || 1402 | 127
751 | 18 || 858 | 207 972 71 1085 | 62 || 1188 | 75 || 1295 | 38 || 1404 | 81
753 | 158 || 860 | 35 975 | 19 || 1086 | 189 || 1190 | 233 || 1297 | 198 || 1407 | 47
754 | 19| 81| 14 977 | 15 || 1087 | 112 || 1191 | 196 || 1298 | 399 || 1409 | 194
756 | 45 || 862 | 349 979 | 178 || 1089 | 91 || 1193 | 173 || 1300 | 75 || 1410 | 383
758 | 233 || 865 1 982 | 177 || 1090 | 79 || 1196 | 281 || 1302 | 77 || 1412 | 125
759 | 98 || 866 | 75 983 | 230 || 1092 | 23 || 1198 | 405 || 1305 | 326 || 1414 | 429
761 3 || 868 | 145 985 | 222 || 1094 | 57 || 1199 | 114 || 1306 | 39 || 1415 | 282
762 | 83 || 870 | 301 986 3 (| 1095 | 139 || 1201 | 171 || 1308 | 495 || 1417 | 342
767 | 168 || 871 | 378 988 | 121 || 1097 | 14 || 1202 | 287 || 1310 | 333 || 1420 | 33
769 | 120 || 873 | 352 990 | 161 || 1098 | 83 || 1204 | 43 || 1311 | 476 || 1422 | 49
772 7 || 876 | 149 991 | 39 || 1100 | 35 || 1206 | 513 || 1313 | 164 || 1423 | 15
774 | 185 || 879 | 11 993 | 62 || 1102 | 117 || 1207 | 273 || 1314 | 19 || 1425 | 28
775 | 93 || 881 | 78 994 | 223 || 1103 | 65 || 1209 | 118 || 1319 | 129 || 1426 | 103
777 | 29 || 882 | 99 996 | 65 || 1105 | 21 || 1210 | 243 || 1321 | 52 || 1428 | 27
778 | 375 || 884 | 173 998 | 101 || 1106 | 195 || 1212 | 203 || 1324 | 337 || 1430 | 33
780 | 13 || 887 | 147 999 | 59 || 1108 | 327 || 1214 | 257 || 1326 | 397 || 1431 | 17
782 | 329 || 889 | 127 || 1001 | 17 || 1110 | 417 || 1215 | 302 || 1327 | 277 || 1433 | 387
783 | 68 || 890 | 183 || 1007 | 75 || 1111 | 13 (| 1217 | 393 || 1329 | 73 || 1434 | 363
785 | 92 || 892 | 31 || 1009 | 55| 1113 | 107 || 1218 | 91 || 1332 | 95 || 1436 | 83
791 | 30 || 894 | 173 || 1010 | 99 || 1116 | 59 (| 1220 | 413 || 1334 | 617 || 1438 | 357
793 | 253 || 895 | 12 || 1012 | 115 || 1119 | 283 || 1223 | 255 || 1335 | 392 || 1441 | 322
794 | 143 || 897 | 113 || 1014 | 385 || 1121 | 62 || 1225 | 234 || 1337 | 75 || 1442 | 395
798 | 53 || 898 | 207 || 1015 | 186 || 1122 | 427 || 1226 | 167 || 1338 | 315 || 1444 | 595
799 | 25 || 900 1| 1020 | 135 || 1126 | 105 || 1228 | 27 || 1340 | 125 || 1446 | 421
801 | 217 || 902 | 21 || 1022 | 317 || 1127 | 27 || 1230 | 433 || 1343 | 348 || 1447 | 195
804 | 75| 903 | 35| 1023 7 || 1129 | 103 || 1231 | 105 || 1345 | 553 || 1449 | 13
806 | 21 || 905 | 117 || 1025 | 294 || 1130 | 551 || 1233 | 151 || 1348 | 553 || 1452 | 315
807 7 || 906 | 123 || 1026 | 35 || 1134 | 129 || 1234 | 427 || 1350 | 237 || 1454 | 297
809 | 15 || 908 | 143 || 1028 | 119 || 1135 9| 1236 | 49 || 1351 | 39 || 1455 | 52
810 | 159 || 911 | 204 || 1029 | 98 || 1137 | 277 || 1238 | 153 || 1353 | 371 || 1457 | 314
812 | 29| 913 | 91 || 1030 | 93 || 1138 | 31 || 1239 4 || 1354 | 255 || 1458 | 243
814 | 21| 916 | 183 || 1031 | 68 || 1140 | 141 || 1241 | 54 || 1356 | 131 || 1460 | 185
815 | 333 || 918 | 77 || 1033 | 108 || 1142 | 357 || 1242 | 203 || 1358 | 117 || 1463 | 575
817 | 52| 919 | 36 || 1034 | 75 || 1145 | 227 || 1246 | 25 || 1359 | 98 || 1465 | 39
818 | 119 || 921 | 221 || 1036 | 411 || 1146 | 131 || 1247 | 14 || 1361 | 56 || 1466 | 311
820 | 123 || 924 | 31 || 1039 | 21 || 1148 | 23 || 1249 | 187 || 1362 | 655 || 1468 | 181
822 | 17 || 926 | 365 || 1041 | 412 || 1151 | 90 || 1252 | 97 || 1364 | 239 || 1470 | 49
823 9 || 927 | 403 || 1042 | 439 || 1153 | 241 || 1255 | 589 || 1366 1) 1471 | 25
825 | 38| 930 | 31| 1044 | 41 || 1154 | 75 || 1257 | 289 || 1367 | 134 || 1473 | 77
826 | 255 || 932 | 177 || 1047 | 10 || 1156 | 307 || 1260 | 21 || 1369 | 88 || 1476 | 21
828 | 189 || 935 | 417 || 1049 | 141 || 1158 | 245 || 1263 | 77 || 1372 | 181 || 1478 | 69

Table 4.7: Irreducibletrinomialsz™ +x* +1 over Z,. For eachm, 723 < m < 1478, for whichan
irreducibletrinomial of degree m in Z»[z] exists, thetable givesthe smallest k for which 2™ +z* +1
isirreducible over Z,.
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being primitiveis approximately ¢(p™ — 1)/p™. Using the lower bound for the Euler phi
function (Fact 2.102), this probability can be seento be at least 1/(6 lnlnp™). This sug-
gests the following algorithm for generating primitive polynomials.

4.78 Algorithm Generating a random monic primitive polynomial over Z,

INPUT: aprime p, integer m > 1, and the distinct prime factorsry, 7o, . .. ,r; Of p™ — 1.
OUTPUT: amonic primitive polynomid f(z) of degreem inZ,[x].
1. Repeat the following:
1.1 Use Algorithm 4.70 to generate a random monic irreducible polynomial f(z)
of degreem inZy[z].
1.2 Use Algorithm 4.77 to test whether f(z) is primitive.
Until f(z) isprimitive.
2. Return(f(z)).

For eachm, 1 < m < 229, Table 4.8 lists a polynomial of degree m that is primitive
over Zo. If there exists aprimitive trinomia f(x) = ™ + z* + 1, then the trinomial with
thesmallest k islisted. If no primitivetrinomial exists, then a primitive pentanomial of the
form f(z) = 2™ + xF + %2 + 2 4 1islisted.

If p™ — 1 is prime, then Fact 4.76 implies that every irreducible polynomial of de-
greem inZ,[x] isalso primitive. Table4.9 giveseither aprimitivetrinomial or aprimitive
pentanomial of degree m over Z, where m isan exponent of one of the first 27 Mersenne
primes (Definition 4.35).

4.6 Generators and elements of high order

Recall (Definition 2.169) that if G isa(multiplicative) finite group, the order of an element
a € G istheleast positive integer ¢ such that a® = 1. If there are n elementsin G, and if
a € G isan element of order n, then G is said to be cyclic and a is called a generator or a
primitiveelement of G (Definition 2.167). Of special interest for cryptographic applications
are the multiplicative group Z,, of the integers modulo a prime p, and the multiplicative
group IF5,.. of thefinitefield Fom of characteristic two; these groups are cyclic (Fact 2.213).
Also of interest is the group Z;, (Definition 2.124), where n is the product of two distinct
odd primes. This section deals with the problem of finding generators and other elements
of high order in Z, F5.., and Z,,. See §2.5.1 for background in group theory and §2.6 for
background in finite fields.

Algorithm 4.79 is an efficient method for determining the order of a group element,
given the primefactorization of the group order n. The correctness of the algorithmfollows
from the fact that the order of an element must divide n (Fact 2.171).
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k or k or k or k or

m | (k1,k2,k3) m | (ki,k2,k3) m | (ki,k2,k3) m | (ki,k2,k3)
2 1 59 22,21,1 116 71,70, 1 173 100, 99, 1
3 1 60 1 117 20, 18, 2 174 13
4 1 61 16, 15,1 118 33 175 6
5 2 62 57,56, 1 119 8 176 119, 118, 1
6 1 63 1 120 118, 111, 7 177 8
7 1 64 4,31 121 18 178 87
8 6,51 65 18 122 60, 59, 1 179 34,33, 1
9 4 66 10,9,1 123 2 180 37,36, 1
10 3 67 10,9, 1 124 37 181 7,6,1
11 2 68 9 125 108, 107, 1 182 128, 127,1
12 7,4,3 69 29, 27,2 126 37,36, 1 183 56
13 4,31 70 16, 15,1 127 1 184 102,101, 1
14 12,11, 1 71 6 128 29,27,2 185 24
15 1 72 53,47,6 129 5 186 23,22, 1
16 532 73 25 130 3 187 58,57, 1
17 3 74 16, 15,1 131 48,47, 1 188 74,73, 1
18 7 75 11,10, 1 132 29 189 127,126, 1
19 6,51 76 36, 35,1 133 52,51, 1 190 18,17, 1
20 3 e 31,30, 1 134 57 191 9
21 2 78 20,19,1 135 11 192 28,27, 1
22 1 79 9 136 126, 125, 1 193 15
23 5 80 38,37, 1 137 21 194 87
24 4,31 81 4 138 8,71 195 10,9, 1
25 3 82 38, 35,3 139 8,5 3 196 66, 65, 1
26 8,71 83 46, 45, 1 140 29 197 62,61, 1
27 8,71 84 13 141 32,31,1 198 65
28 3 85 28,27, 1 142 21 199 34
29 2 86 13,12, 1 143 21,20, 1 200 42,41, 1
30 16, 15,1 87 13 144 70, 69, 1 201 14
31 3 88 72,71, 1 145 52 202 55
32 28,27, 1 89 38 146 60, 59, 1 203 8,71
33 13 920 19,18, 1 147 38,37, 1 204 74,73, 1
34 15,14, 1 91 84,83, 1 148 27 205 30,29, 1
35 2 92 13,12, 1 149 110, 109, 1 206 29,28, 1
36 11 93 2 150 53 207 43
37 12, 10, 2 94 21 151 3 208 62,59, 3
38 6,51 95 11 152 66, 65, 1 209 6
39 4 96 49, 47, 2 153 1 210 35,32, 3
40 21,19, 2 97 6 154 129, 127, 2 211 46, 45,1
41 3 98 11 155 32,31, 1 212 105
42 23,22, 1 99 47,45, 2 156 116, 115, 1 213 8,71
43 6,5 1 100 37 157 27,26, 1 214 49,48, 1
44 27,26, 1 101 7,6, 1 158 27,26, 1 215 23
45 4,31 102 77,76, 1 159 31 216 196, 195, 1
46 21,20, 1 103 9 160 19,18, 1 217 45
47 5 104 11,10, 1 161 18 218 11
48 28,27, 1 105 16 162 88,87, 1 219 19,18, 1
49 9 106 15 163 60, 59, 1 220 15,14, 1
50 27,26, 1 107 65, 63, 2 164 14,13, 1 221 35,34, 1
51 16, 15,1 108 31 165 31,30, 1 222 92,91,1
52 3 109 7,6,1 166 39,38, 1 223 33
53 16, 15,1 110 13,12, 1 167 6 224 31,30, 1
54 37,36, 1 111 10 168 17,15, 2 225 32
55 24 112 45, 43, 2 169 34 226 58,57, 1
56 22,21, 1 113 9 170 23 227 46, 45,1
57 7 114 82,81, 1 171 19,18, 1 228 148, 147, 1
58 19 115 15,14, 1 172 7 229 64, 63, 1

Table 4.8: Primitive polynomials over Zz. For eachm, 1 < m < 229, an exponent k is given for
whichthetrinomial 2™ +z* + 1 isprimitiveover Z,. If no such trinomial exists, a triple of exponents
(K1, k2, k3) is given for which the pentanomial z™ + 1 + z*2 4 %3 4 1 is primitive over Z..
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| i | m | k (k1, k2, k3) |

1 2 1

2 3 1

3 5 2

4 7 1,3

5 13 none (4,3,1)

6 17 3,56

7 19 none (5,2,1)

8 31 3,6,7,13

9 61 none (43,26,14)

10 89 38

1 107 none (82,57,31)

12 | 127 | 1,7,15,30,63

13 | 521 | 32,48, 158, 168

14 | 607 | 105, 147,273

15 | 1279 | 216,418

16 | 2203 | none (1656,1197,585)

17 | 2281 | 715, 915, 1029

18 | 3217 | 67,576

19 | 4253 | none (3297,2254,1093)

20 | 4423 | 271, 369, 370, 649, 1393, 1419, 2098

21 | 9689 | 84,471, 1836, 2444, 4187

22 | 9941 | none (7449,4964,2475)

23 | 11213 | none (8218,6181,2304)

24 | 19937 | 881, 7083, 9842

25 | 21701 | none (15986,11393,5073)

26 | 23209 | 1530, 6619, 9739

27 | 44497 | 8575, 21034
Table 4.9: Primitive polynomialsof degreem over Z2, 2™ —1 aMersenneprime. For each exponent
m = Mj of thefirst 27 Mersenne primes, the table lists all valuesof k, 1 < k < m/2, for which
the trinomial 2™ + z* + 1 isirreducible over Zs. If no such trinomial exists, a triple of exponents
(K1, k2, ks) islisted such that the pentanomial =™ + z*1 + z*2 4 z*2 4 1 isirreducible over Z,.

4.79 Algorithm Determining the order of a group element

INPUT: a (multiplicative) finite group G of order n, an element a € G, and the prime fac-
torization n = pi*ps? - - - pir.
OUTPUT: the order ¢ of a.
1. Sett<n.
2. For i from 1 to k do the following:
2.1 Sett<t/p;".
2.2 Compute a; +a'.
2.3 Whilea; # 1 do the following: compute a; +—a}* and set t«t - p;.

3. Return(t).

Supposenow that G isacyclic group of order n. Thenfor any divisor d of n the number
of elementsof order d in G isexactly ¢(d) (Fact 2.173(ii)), where ¢ isthe Euler phi function
(Definition 2.100). In particular, G has exactly ¢(n) generators, and hence the probability
of arandom element in G being a generator is ¢(n) /n. Using the lower bound for the Eu-
ler phi function (Fact 2.102), this probability can be seento beat least 1/(6lnlnn). This
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4.80

481

4.82

4.83

suggests the following efficient randomized algorithm for finding a generator of a cyclic
group.

Algorithm Finding a generator of a cyclic group

INPUT: acyclic group G of order n, and the prime factorization n = p{*p5? - - - pi.
OUTPUT: agenerator o of G.

1. Choose arandom element o in G.
2. For i from 1 to & do the following:

2.1 Compute b«—a™/Pi.
22 If b=1thengotostep 1.

3. Return(a).

Note (group elements of high order) In some situations it may be desirable to have an el-
ement of high order, and not a generator. Given a generator « in acyclic group G of order
n, and given adivisor d of n, an element 3 of order d in G can be efficiently obtained as
follows: 8 = o™/, If g isaprime divisor of the order n. of acyclic group G, then the fol-
lowing method finds an element 5 € G of order ¢ without first having to find a generator
of G: select arandom element g € G and compute 3 = ¢™/; repeat until 5 # 1.

Note (generatorsof F3..) There are two basic approachesto finding a generator of F... .
Both techniques require the factorization of the order of F5..., namely 2™ — 1.

(i) Generate amonic primitive polynomial f(z) of degree m over Z, (Algorithm 4.78).
Thefinite field Fom can then be represented as Zs[z]/(f (x)), the set of al polyno-
mials over Z, modulo f(z), and the element o = x is a generator.

(if) Select the method for representing elements of Fom first. Then use Algorithm 4.80
with G = F;.. andn = 2™ — 1 to find agenerator o of F5,n.

If n = pq, wherep and ¢ aredistinct odd primes, then Z; isanon-cyclic group of order
#(n) = (p — 1)(¢ — 1). The maximum order of an element in Z* islem(p — 1,q — 1).
Algorithm 4.83 isamethod for generating such an element which requiresthe factorizations
ofp—1landg—1.

Algorithm Selecting an element of maximum order in Z;,, where n = pq

INPUT: two distinct odd primes, p, ¢, and the factorizationsof p — 1 and ¢ — 1.
OUTPUT: an element o of maximum order lem(p — 1,¢ — 1) in Z;, wheren = pq.

1. UseAlgorithm 4.80 with G = Z; andn = p — 1 to find agenerator a of Z.

2. Use Algorithm 4.80 with G = Z; and n = ¢ — 1 to find agenerator b of Z.

3. Use Gauss's algorithm (Algorithm 2.121) to find aninteger o, 1 < o < n — 1,
satisfying o = a (mod p) anda = b (mod q).

4. Return(c).
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4.6.1 Selecting a prime p and generator of Z,

4.84

4.85

4.86

In cryptographic applications for which a generator of Z;, is required, one usually has the
flexibility of selecting the primep. To guard against the Pohlig-Hellman algorithm for com-
puting discretelogarithms (Algorithm 3.63), asecurity requirement isthat p— 1 should con-
taina“large’ primefactor ¢. Inthiscontext, “large’ meansthat the quantity ‘g represents
an infeasible amount of computation; for example, ¢ > 29, This suggests the following
algorithm for selecting appropriate parameters (p, a).

Algorithm Selecting a k-bit prime p and a generator « of Z;

INPUT: the required bitlength & of the prime and a security parameter ¢.
OUTPUT: ak-bit prime p such that p — 1 has a prime factor > ¢, and agenerator a of Z;,.
1. Repeat the following:
1.1 Select arandom k-bit prime p (for example, using Algorithm 4.44).
1.2 Factorp — 1.
Until p — 1 hasaprime factor > ¢.
2. Use Algorithm 4.80 with G = Z,, and n = p — 1 to find agenerator o of Z,.
3. Return(p,a).

Algorithm 4.84 isrelatively inefficient as it requires the use of an integer factorization
algorithmin step 1.2. An alternative approach is to generate the prime p by first choosing
alarge prime ¢ and then selecting relatively small integers R at random until p = 2Rg + 1
isprime. Sincep — 1 = 2Rgq, thefactorization of p — 1 can be obtained by factoring R. A
particularly convenient situation occurs by imposing the condition R = 1. In this case the
factorization of p — 1 issimply 2¢. Furthermore, since ¢(p — 1) = ¢(2q) = #(2)¢(q) =
q — 1, the probability that arandomly selected element o € Z,, isagenerator is ‘12;(11 = %

Definition A safeprimepisaprimeof theformp = 2¢ + 1 where ¢ isprime.

Algorithm 4.86 generates a safe (probable) prime p and a generator of Z,.

Algorithm Selecting a k-bit safe prime p and a generator « of Z;,

INPUT: the required bitlength & of the prime.
OUTPUT: ak-bit safe prime p and a generator a of Z,,.

1. Do thefollowing:
1.1 Select arandom (k — 1)-bit prime ¢ (for example, using Algorithm 4.44).
1.2 Compute p+2g + 1, and test whether p is prime (for example, using tria divi-
sion by small primes and Algorithm 4.24).
Until p isprime.
2. Use Algorithm 4.80 to find a generator « of Z;.
3. Return(p,a).
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4.7 Notes and further references

§4.1

§4.2

Several books provide extensive treatments of primality testing including those by Bres-
soud [198], Bach and Shallit [70], and Koblitz [697]. The book by Kranakis[710] offers
amoretheoretical approach. Cohen [263] gives acomprehensive treatment of modern pri-
mality tests. See also the survey articlesby A. Lenstra[747] and A. Lenstraand H. Lenstra
[748]. Facts 4.1 and 4.2 were proven in 1837 by Dirichlet. For proofs of these results, see
Chapter 16 of Ireland and Rosen [572]. Fact 4.3 is due to Rosser and Schoenfeld [1070].
Bach and Shallit [70] have further results on the distribution of prime numbers.

Fact 4.13(i) wasproven by Alford, Granville, and Pomerance[24]; seealso Granville[521].
Fact 4.13(ii) is due to Pomerance, Selfridge, and Wagstaff [996]. Pinch [974] showed that
there are 105212 Carmichael numbers up to 101°.

The Solovay-Strassen probabilistic primality test (Algorithm 4.18) is due to Solovay and
Strassen [1163], as modified by Atkin and Larson [57].

Fact 4.23 was proven independently by Monier [892] and Rabin [1024]. The Miller-Rabin
test (Algorithm 4.24) originated in the work of Miller [876] who presented it as a non-
probabilistic polynomial-timealgorithm assuming the correctness of the Extended Riemann
Hypothesis (ERH). Rabin [1021, 1024] rephrased Miller’s algorithm as a probabilistic pri-
mality test. Rabin’s algorithm required a small nhumber of ged computations. The Miller-
Rabintest (Algorithm 4.24) isasimplification of Rabin’s algorithm which does not require
any gcd computations, and is due to Knuth [692, p.379]. Arazi [55], making use of Mont-
gomery modular multiplication (§14.3.2), showed how the Miller-Rabin test can be imple-
mented by “divisionless modular exponentiations’ only, yielding a probabilistic primality
test which does not use any division operations.

Miller [876], appealing to the work of Ankeny [32], proved under assumption of the Ex-
tended Riemann Hypothesisthat, if n isan odd composite integer, then itsleast strong wit-
nessis less than c(Inn)?, where c is some constant. Bach [63] proved that this constant
may be taken to be ¢ = 2; see also Bach [64]. As a conseguence, one can test n for pri-
mality in O((Ign)®) bit operations by executing the Miller-Rabin algorithm for all bases
a < 2(Inn)?. Thisgives a deterministic polynomial-time algorithm for primality testing,
under the assumption that the ERH istrue.

Table 4.1 is from Jaeschke [630], building on earlier work of Pomerance, Selfridge, and
Wagstaff [996]. Arnault [56] found the following 46-digit composite integer

n = 1195068768795265792518361315725116351898245581

that is a strong pseudoprimeto all the 11 prime bases up to 31. Arnault also found a 337-
digit composite integer which is a strong pseudoprimeto all 46 prime bases up to 199.

The Miller-Rabin test (Algorithm 4.24) randomly generates¢ independent bases a and tests
to see if each is a strong witness for n. Let n be an odd composite integer and let ¢ =
(% lgn]. In situations where random bits are scarce, one may choose instead to generate
asingle random base a and usethe basesa,a + 1,... ,a + t — 1. Bach [66] proved that
for arandomly chosen integer a, the probability that a,a +1,... ,a + ¢t — 1 are all strong
liars for n is bounded above by n—1/4+°(1): in other words, the probability that the Miller-
Rabin algorithm using these bases mistakenly declares an odd composite integer “prime”
isat most n—1/4t°(1) | Peraltaand Shoup [969] later improved this bound to n—1/2+°(1),
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§4.3

Monier [892] gave exact formulas for the number of Fermat liars, Euler liars, and strong
liars for composite integers. One consequence of Monier’s formulas is the following im-
provement (in the case where n is not a prime power) of Fact 4.17 (see Kranakis [710,
p.68]). If n > 3 isan odd composite integer having r distinct prime factors, and if n = 3

(mod 4), then there are at most ¢(n)/2"~* Euler liarsfor n. Another consequenceis the
following improvement (in the case where n has at least three distinct prime factors) of
Fact 4.23. If n > 3 isan odd composite integer having r distinct prime factors, then there
areat most ¢(n) /27! strong liarsfor n. Erdosand Pomerance[373] estimated the average
number of Fermat liars, Euler liars, and strong liarsfor compositeintegers. Fact 4.30(ii) was
proven independently by Atkin and Larson [57], Monier [892], and Pomerance, Selfridge,
and Wagstaff [996].

Pinch [975] reviewed the probabilistic primality tests used in the Mathematica, Maple V,
Axiom, and Pari/GP computer algebra systems. Some of these systems use a probabilistic
primality test known as the Lucastest; a description of thistest is provided by Pomerance,
Selfridge, and Wagstaff [996].

If anumber n iscomposite, providing anon-trivial divisor of n isevidence of itscomposite-
nessthat can be verified in polynomial time (by long division). In other words, the decision
problem “is n composite?’ belongs to the complexity class NP (cf. Example 2.65). Pratt
[1000] used Fact 4.38 to show that this decision problem isalso in co-NP. That is, if n is
prime there exists some evidence of this (called a certificate of primality) that can be veri-
fied in polynomial time. Note that theissue here is not in finding such evidence, but rather
in determining whether such evidence exists which, if found, allows efficient verification.
Pomerance [992] improved Pratt’s results and showed that every prime n has a certificate
of primality which requires O(In n) multiplications modulo n for its verification.

Primality of the Fermat number Fj, = 22" 4 1 can be determined in deterministic polyno-
mial time by Pepin'stest: for k > 2, F isprimeif andonly if 5(Fx~1/2 = —1 (mod F},).
For the history behind Pepin’s test and the L ucas-Lehmer test (Algorithm 4.37), see Bach
and Shallit [70].

In Fact 4.38, the integer a does not have to be the samefor al g. More precisely, Brillhart
and Selfridge [212] showed that Fact 4.38 can be refined as follows: an integer n > 3 is
primeif and only if for each prime divisor ¢ of n — 1, there exists an integer a, such that

a?~' =1 (mod n) and al™ /% £ 1 (mod n). The sameistrue of Fact 4.40, which is
due to Pocklington [981]. For a proof of Fact 4.41, see Maurer [818]. Fact 4.42 isdue to
Brillhart, Lehmer, and Selfridge [210]; asimplified proof is given by Maurer [818].

The original Jacobi sum test was discovered by Adleman, Pomerance, and Rumely [16].
The agorithm was simplified, both theoretically and algorithmically, by Cohen and H.
Lenstra [265]. Cohen and A. Lenstra [264] give an implementation report of the Cohen-
Lenstra Jacobi sum test; see also Chapter 9 of Cohen [263]. Further improvements of the
Jacobi sum test are reported by Bosma and van der Hulst [174].

Elliptic curves werefirst used for primality proving by Goldwasser and Kilian [477], who
presented a randomized algorithm which has an expected running time of O((Inn)*!) bit
operationsfor most inputsn. Subsequently, Adleman and Huang [13] designed a primality
proving algorithm using hyperélliptic curves of genus two whose expected running time
is polynomial for all inputs n. This established that the decision problem “is n prime?”’
isin the complexity class RP (Definition 2.77(ii)). The Goldwasser-Kilian and Adleman-
Huang algorithms are inefficient in practice. Atkin’s test, and an implementation of it, is
extensively described by Atkin and Morain [58]; see also Chapter 9 of Cohen [263]. The
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largest number proven prime as of 1996 by ageneral purpose primality proving algorithmis
a 1505-decimal digit number, accomplished by Morain [903] using Atkin’s test. The total
time for the computation was estimated to be 4 years of CPU time distributed among 21
SUN 3/60 workstations. See also Morain [902] for an implementation report on Atkin's
test which was used to prove the primality of the 1065-decimal digit number (233° +1)/3.

A proof of Mertens's theorem can be found in Hardy and Wright [540]. The optimal trial
division bound (Note 4.45) wasderived by Maurer [818]. Thediscussion (Note4.47) onthe
probability P(X|Y;) isfrom Beauchemin et a. [81]; the result mentioned in the last sen-
tence of this note is due to Kim and Pomerance [673]. Fact 4.48 was derived by Damgard,
Landrock, and Pomerance [300], building on earlier work of Erdds and Pomerance [373],
Kim and Pomerance[673], and Damgéard and Landrock [299]. Table4.3is Table 2 of Dam-
gard, Landrock, and Pomerance [300]. The suggestionsto first do a Miller-Rabin test with
base a = 2 (Remark 4.50) and to do an incremental search (Note 4.51) in Algorithm 4.44
were made by Brandt, Damgérd, and Landrock [187]. The error and failure probabilities
for incremental search (Note 4.51(i)) were obtained by Brandt and Damgérd [186]; consult
this paper for more concrete estimates of these probabilities.

Algorithm 4.53 for generating strong primesisdueto Gordon [514, 513]. Gordon originally
proposed computing po = (s”* — 1) mod rs instep 3. Kaliski (personal communica-
tion, April 1996) proposed the modified formulapy = (25" 2 mod r)s — 1 which can be
computed more efficiently. Williams and Schmid [1249] proposed an algorithm for gener-
ating strong primes p with the additional constraint that p — 1 = 2¢ where ¢ is prime; this
algorithmis not as efficient as Gordon’ salgorithm. Hellman and Bach [550] recommended
an additional constraint on strong primes, specifying that s — 1 (where s isalarge prime
factor of p+ 1) must have alarge primefactor (see §15.2.3(v)); thisthwarts cycling attacks
based on L ucas sequences.

The NIST method for prime generation (Algorithm 4.56) isthat recommended by the NIST
Federal Information Processing Standards Publication (FIPS) 186 [406].

Fact 4.59 and Algorithm 4.62 for provabl e prime generation are derived from Maurer [818].
Algorithm 4.62 is based on that of Shawe-Taylor [1123]. Maurer notes that the total diver-
sity of reachable primes using the original version of his algorithm is roughly 10% of all
primes. Maurer also presents amore complicated algorithm for generating provable primes
with abetter diversity than Algorithm 4.62, and provides extensive implementation details
and analysis of the expected runningtime. Maurer [812] provides heuristicjustification that
Algorithm 4.62 generates primes with virtually uniform distribution. Mihailescu [870] ob-
served that Maurer’s algorithm can be improved by using the Eratosthenes sieve method
for trial division (in step 8.2 of Algorithm 4.62) and by searching for aprimen in an appro-
priateinterval of thearithmetic progression2¢+1,4q+1,6g+1,. .. instead of generating
R'sat random until n = 2Rq + 1 isprime. The second improvement comes at the expense
of areduction of the set of primes which may be produced by the algorithm. Mihailescu’s
paper includes extensive analysis and an implementation report.

Lidl and Niederreiter [ 764] provide acomprehensivetreatment of irreducible polynomials;
proofs of Facts 4.67 and 4.68 can be found there.

Algorithm 4.69 for testing a polynomial for irreducibility isdueto Ben-Or [109]. Thefast-
est algorithm known for generating irreducible polynomialsis dueto Shoup [1131] and has
an expected running time of O(m? lg m + m? 1g p) Z,-operations. Thereisno determinis-
tic polynomial-time algorithm known for finding an irreducible polynomial of a specified
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degree m in Z,[x]. Adleman and Lenstra[14] give a deterministic algorithm that runsin
polynomial time under the assumption that the ERH is true. The best deterministic algo-
rithm known is due to Shoup [1129] and takes O(m* p) Z,-operations, ignoring powers
of logm and log p. Gordon [512] presents an improved method for computing minimum
polynomials of elementsin Fom.

Zierler and Brillhart [1271] provide atable of al irreducible trinomials of degree < 1000
in Zz[x]. Blake, Gao, and Lambert [146] extended this list to all irreducible trinomials of
degree < 2000 in Z»[x]. Fact 4.75 isfrom their paper.

Table 4.8 extends a similar table by Stahnke [1168]. The primitive pentanomials z™ +
xF1 k2 4 zks 4 1 listed in Table 4.8 have the following properties: (i) &k = ko + ks;
(i) ko > ks; and (iii) ks is as small as possible, and for this particular value of ks, ko is
as small as possible. The rational behind this form is explained in Stahnke's paper. For
each m < 5000 for which the factorization of 2™ — 1 is known, Zivkovi¢ [1275, 1276]
gives a primitive trinomial in Zy[z], one primitive polynomial in Z[z] having five non-
zero terms, and one primitive polynomia in Zs[z] having seven non-zero terms, provided
that such polynomials exist. The factorizations of 2™ — 1 are known for all m < 510 and
for some additional m < 5000. A list of such factorizations can be found in Brillhart et
al. [211] and updates of the list are available by anonymous ftp from sabl e. ox. ac. uk
inthe/ pub/ nmat h/ cunni nghant directory. Hansen and Mullen [538] describe some
improvementsto Algorithm 4.78 for generating primitive polynomials. They also give ta-
bles of primitive polynomials of degree m in Z,[z] for each prime power p™ < 105° with
p < 97. Moreover, for each such p and m, the primitive polynomial of degree m over Z,
listed has the smallest number of non-zero coefficients among all such polynomials.

The entries of Table 4.9 were obtained from Zierler [1270] for Mersenne exponents MM ;,
1 < j < 23, and from Kuritaand Matsumoto [719] for Mersenne exponents A/, 24 < j <
27.

Let f(x) € Zp[z] be anirreducible polynomial of degree m, and consider the finite field
Fym = Zylx]/(f(z)). Then f(z) is called anormal polynomial if the set {z, a
z#" '} forms a basis for F,~ over Z,; such a basis is called a normal basis. Mullin et
al. [911] introduced the concept of an optimal normal basisin order to reduce the hardware
complexity of multiplying field elementsin thefinitefield Fo. A VLS| implementation of
the arithmeticin Fy» which usesoptimal normal basesis described by Agnew et al. [18]. A
normal polynomial which is also primitiveis called a primitive normal polynomial. Dav-
enport [301] proved that for any prime p and positive integer m there exists a primitive
normal polynomial of degreem in Z,,[z]. See also Lenstraand Schoof [760] who general-
ized this result from prime fields Z,, to prime power fields F,. Morgan and Mullen [905]
give aprimitive normal polynomial of degree m over Z,, for each prime power p™ < 10°°
with p < 97. Moreover, each polynomial has the smallest number of non-zero coefficients
among all primitive normal polynomialsof degreem over Z,; infact, each polynomial has
at most five non-zero terms.

No polynomial-time algorithm is known for finding generators, or even for testing whether
an element isagenerator, of afinitefield F,, if thefactorization of ¢ — 1 isunknown. Shoup
[1130] considered the problem of deterministically generating in polynomial time a subset
of I, that contains a generator, and presented a sol ution to the problem for the case where
the characteristic p of I, issmall (e.g. p = 2). Maurer [818] discusses how his agorithm
(Algorithm 4.62) can be used to generate the parameters (p, ), wherep isaprovableprime
and o is agenerator of Z,.
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5.1 Introduction

The security of many cryptographic systems depends upon the generation of unpredictable
guantities. Examplesinclude the keystream in the one-time pad (§1.5.4), the secret key in
the DES encryption algorithm (§7.4.2), the primes p, g in the RSA encryption (§8.2) and
digital signature (§11.3.1) schemes, the private key a in the DSA (§11.5.1), and the chal-
lenges used in challenge-response identification systems (§10.3). In all these cases, the
guantities generated must be of sufficient size and be “random” in the sense that the proba-
bility of any particular value being sel ected must be sufficiently small to preclude an adver-
sary from gai ning advantage through optimizing asearch strategy based on such probability.
For example, the key space for DES has size 2°6. If a secret key k were selected using a
true random generator, an adversary would on average have to try 25° possible keys before
guessing the correct key k. If, on the other hand, akey k were selected by first choosing a
16-bit random secret s, and then expanding it into a 56-bit key & using a complicated but
publicly known function £, the adversary would on average only need to try 25 possible
keys (obtained by running every possible valuefor s through the function f).

This chapter considers techniques for the generation of random and pseudorandom
bits and numbers. Related techniques for pseudorandom bit generation that are generally
discussed in the literature in the context of stream ciphers, including linear and nonlinear
feedback shift registers (Chapter 6) and the output feedback mode (OFB) of block ciphers
(Chapter 7), are addressed el sewhere in this book.

Chapter outline

The remainder of §5.1 introduces basic concepts relevant to random and pseudorandom
bit generation. §5.2 considers techniques for random bit generation, while §5.3 considers
some techniques for pseudorandom bit generation. §5.4 describes statistical tests designed
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to measure the quality of arandom bit generator. Cryptographically secure pseudorandom
bit generatorsarethetopic of §5.5. §5.6 concludeswith referencesand further chapter notes.

5.1.1 Background and Classification

51

5.2

53

54

Definition A random bit generator is a device or agorithm which outputs a sequence of
statistically independent and unbiased binary digits.

Remark (randombitsvs. random numbers) A random bit generator can be used to gener-
ate (uniformly distributed) random numbers. For example, arandom integer in the interval
[0, n] can be obtained by generating a random bit sequence of length |lgn| + 1, and con-
verting it to an integer; if the resulting integer exceeds n, one option is to discard it and
generate anew random bit sequence.

§5.2 outlines some physical sources of random bits that are used in practice. Ideadly,
secretsrequiredin cryptographic algorithmsand protocol s should be generated with a(true)
random bit generator. However, the generation of random bitsisan inefficient procedurein
most practical environments. Moreover, it may beimpractical to securely store and transmit
alarge number of random bitsif these are required in applications such as the one-time pad
(§6.1.1). In such situations, the problem can be ameliorated by substituting a random bit
generator with a pseudorandom bit generator.

Definition A pseudorandom bit generator (PRBG) is a deterministic! algorithm which,
given atruly random binary sequenceof length &, outputsabinary sequenceof lengthl > k
which “appears’ to be random. Theinput to the PRBG is called the seed, while the output
of the PRBG is called a pseudorandom bit sequence.

The output of aPRBG is not random; in fact, the number of possible output sequencesis at
most asmall fraction, namely 2% /2!, of all possible binary sequencesof length . Theintent
isto takeasmall truly random sequence and expand it to a sequence of much larger length,
in such away that an adversary cannot efficiently distinguish between output sequences of
the PRBG and truly random sequences of length {. §5.3 discusses ad-hoc techniques for
pseudorandom bit generation. In order to gain confidence that such generators are secure,
they should be subjected to avariety of statistical tests designed to detect the specific char-
acteristics expected of random sequences. A collection of such testsisgivenin §5.4. As
the following example demonstrates, passing these statistical tests is a necessary but not
sufficient condition for a generator to be secure.

Example (linear congruential generators) A linear congruential generator produces a
pseudorandom sequence of numbers x;, zo, x3, .. . according to the linear recurrence

T, = aTp_1 +bmodm, n>1;

integersa, b, and m are parameter swhich characterizethe generator, while z isthe (secret)
seed. While such generators are commonly used for simulation purposes and probabilistic
algorithms, and pass the statistical tests of §5.4, they are predictable and hence entirely in-
secure for cryptographic purposes: given a partial output sequence, the remainder of the
seguence can be reconstructed even if the parameters a, b, and m are unknown. O

I Deterministic here meansthat given the sameinitial seed, the generator will always produce the same output
sequence.
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5.5

5.6

5.7

5.8

59

A minimum security requirement for a pseudorandom bit generator is that the length
k of the random seed should be sufficiently large so that a search over 2% elements (the
total number of possible seeds) is infeasible for the adversary. Two general requirements
arethat the output sequences of a PRBG should be statistically indistinguishable from truly
random sequences, and the output bits should be unpredictableto an adversary with limited
computational resources; these requirements are captured in Definitions 5.5 and 5.6.

Definition A pseudorandom bit generator is said to pass all polynomial-time? statistical
testsif no polynomial-timealgorithm can correctly distinguish between an output sequence
of the generator and a truly random sequence of the same length with probability signifi-
cantly greater that 3.

Definition A pseudorandom bit generator is said to pass the next-bit test if there is no
polynomial-time algorithm which, on input of the first [ bits of an output sequence s, can
predict the (I + 1)t bit of s with probability significantly greater than %

Although Definition 5.5 appears to impose a more stringent security requirement on
pseudorandom bit generators than Definition 5.6 does, the next result asserts that they are,
in fact, equivalent.

Fact (universality of the next-bit test) A pseudorandom bit generator passes the next-bit
test if and only if it passes all polynomial-time statistical tests.

Definition A PRBG that passes the next-hit test (possibly under some plausible but un-
proved mathematical assumption such asthe intractability of factoring integers) iscalled a
cryptographically secure pseudorandom bit generator (CSPRBG).

Remark (asymptotic nature of Definitions 5.5, 5.6, and 5.8) Each of the three definitions
above are given in complexity-theoretic terms and are asymptotic in nature because the no-
tion of “polynomial-time” is meaningful for asymptotically large inputs only; the resulting
notions of security arerelativein the same sense. To be more precisein Definitions5.5, 5.6,
5.8, and Fact 5.7, a pseudorandom bit generator is actually a family of such PRBGs. Thus
the theoretical security results for afamily of PRBGs are only an indirect indication about
the security of individual members.

Two cryptographically secure pseudorandom bit generators are presented in §5.5.

5.2 Random bit generation

A (true) random bit generator requires a naturally occurring source of randomness. De-
signing a hardware device or software program to exploit this randomness and produce a
bit sequencethat is free of biasesand correlationsis a difficult task. Additionally, for most
cryptographic applications, the generator must not be subject to observation or manipula
tion by an adversary. This section surveys some potential sources of random bits.

Random bit generators based on natural sources of randomness are subject to influence
by external factors, and also to malfunction. It is imperative that such devices be tested
periodicaly, for example by using the statistical tests of §5.4.

2The running time of the test is bounded by a polynomial in the length I of the output sequence.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.



172

Ch.5 Pseudorandom Bits and Sequences

(i) Hardware-based generators

Hardware-based random bit generators exploit the randomness which occursin some phys-
ical phenomena. Such physical processes may produce bitsthat are biased or correlated, in
which case they should be subjected to de-skewing techniques mentioned in (iii) below.
Examples of such physical phenomenainclude:

1. elapsed time between emission of particles during radioactive decay;

2. thermal noise from a semiconductor diode or resistor;

3. thefrequency instability of afree running oscillator;

4. theamount ametal insulator semiconductor capacitor ischarged during afixed period
of time;

5. air turbulence within a sealed disk drive which causes random fluctuations in disk
drive sector read latency times; and

6. sound from amicrophone or video input from a camera.

Generators based on the first two phenomenawould, in general, have to be built externally
to the device using the random bits, and hence may be subject to observation or manipula
tion by an adversary. Generators based on oscillators and capacitors can be built on VLS|
devices; they can be enclosed in tamper-resi stant hardware, and hence shielded from active
adversaries.

(i) Software-based generators

Designing arandom bit generator in software is even more difficult than doing so in hard-
ware. Processes upon which software random bit generators may be based include:

1. the system clock;

2. elapsed time between keystrokes or mouse movement;

3. content of input/output buffers;

4. user input; and

5. operating system values such as system load and network statistics.

The behavior of such processes can vary considerably depending on various factors, such
asthe computer platform. It may also be difficult to prevent an adversary from observing or
mani pulating these processes. For instance, if the adversary hasaroughideaof whenaran-
dom sequencewas generated, she can guessthe content of the system clock at that timewith
ahigh degree of accuracy. A well-designed software random bit generator should utilize as
many good sources of randomness as are available. Using many sources guards against the
possibility of afew of the sources failing, or being observed or manipulated by an adver-
sary. Each source should be sampled, and the sampled sequences should be combined using
acomplex mixing function; one recommended technique for accomplishing thisisto apply
acryptographic hash function such as SHA-1 (Algorithm 9.53) or MD5 (Algorithm 9.51) to
a concatenation of the sampled sequences. The purpose of the mixing function is to distill
the (true) random bits from the sampled sequences.

(iii) De-skewing

A natural source of random bits may be defective in that the output bits may be biased (the
probability of the source emitting a 1 is not equal to %) or correlated (the probability of
the source emitting a1 depends on previous bits emitted). There are varioustechniquesfor
generating truly random bit sequences from the output bits of such a defective generator;
such techniques are called de-skewing techniques.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.
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5.10 Example (removing biasesin output bits) Suppose that a generator produces biased but
uncorrelated bits. Supposethat the probability of al isp, and the probability of a0 is1—p,
where p is unknown but fixed, 0 < p < 1. If the output sequence of such a generator is
grouped into pairsof bits, witha 10 pair transformedtoal, a0l pair transformedto a0, and
00 and 11 pairsdiscarded, then the resulting sequence is both unbiased and uncorrel ated. [

A practical (although not provable) de-skewing techniqueis to pass sequences whose
bitsare biased or correlated through a cryptographic hash function such as SHA-1 or MD5.

5.3 Pseudorandom bit generation

A one-way function f (Definition 1.12) can be utilized to generate pseudorandom bit se-
guences (Definition 5.3) by first selecting arandom seed s, and then applying thefunction to
the sequenceof valuess, s+1, s+2, . . . ; theoutput sequenceis f (s), f(s+1), f(s+2),. ...
Depending on the properties of the one-way function used, it may be necessary to only keep
afew bits of the output values f(s + ¢) in order to remove possible correlations between
successive values. Examples of suitable one-way functions f include a cryptographic hash
function such as SHA-1 (Algorithm 9.53), or ablock cipher such as DES (§7.4) with secret
key k.

Although such ad-hoc methods have not been proven to be cryptographically secure,
they appear sufficient for most applications. Two such methods for pseudorandom bit and
number generation which have been standardized are presentedin §5.3.1 and §5.3.2. Tech-
niques for the cryptographically secure generation of pseudorandom bits are givenin §5.5.

5.3.1 ANSI X9.17 generator

Algorithm5.11isaU.S. Federal Information Processing Standard (FIPS) approved method
from the ANSI X9.17 standard for the purpose of pseudorandomly generating keys and
initialization vectors for use with DES. E), denotes DES E-D-E two-key triple-encryption
(Definition 7.32) under a key k; the key k should be reserved exclusively for use in this
algorithm.

5.11 Algorithm ANSI X9.17 pseudorandom bit generator

INPUT: arandom (and secret) 64-bit seed s, integer m, and DES E-D-E encryption key k.
OUTPUT: m pseudorandom 64-bit strings 1, z2, ... , Zy,.
1. Compute the intermediate value I = E (D), where D is a 64-bit representation of
the date/time to as fine aresolution asis available.
2. For i from 1 to m do the following:
21 2« E; (I ® s).
2.2 s« Ey(z; & I).
3. Return(z1,x2,... ,Tm).

Each output bitstring ; may be used as an initialization vector (IV) for one of the DES
modes of operation (§7.2.2). To obtain aDES key from z;, every eighth bit of z; should be
reset to odd parity (cf. §7.4.2).
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5.3.2 FIPS 186 generator

5.12

5.13

5.14

Thealgorithms presented in this subsection are FI PS-approved methodsfor pseudorandom-
ly generating the secret parametersfor the DSA (§11.5.1). Algorithm 5.12 generates DSA
private keysa, while Algorithm 5.14 generatesthe per-message secrets & to be used in sign-
ing messages. Both algorithmsuse asecret seed s which should berandomly generated, and
utilize aone-way function constructed by using either SHA-1 (Algorithm 9.53) or DES (Al-
gorithm 7.82), respectively described in Algorithms 5.15 and 5.16.

Algorithm FIPS 186 pseudorandom number generator for DSA private keys

INPUT: an integer m and a 160-bit prime number q.
OUTPUT: m pseudorandom numbers ay, as, . . . , a,, intheinterval [0, ¢ — 1] which may
be used as DSA private keys.
1. If Algorithm 5.15 is to be used in step 4.3 then select an arbitrary integer b, 160 <
b < 512; if Algorithm 5.16 isto be used then set b« 160.
2. Generate arandom (and secret) b-hit seed s.
3. Definethe 160-bit stringt = 67452301 ef cdab89 98badcfe 10325476
c3d2elf 0 (in hexadecimal).
4. For ¢ from 1 to m do the following:
4.1 (optional user input) Either select a b-bit string y;, or set y;<0.
4.2 z;+(s +y;) mod 2°,
4.3 a;+G(t, z;) mod q. (G iseither that defined in Algorithm 5.15 or 5.16.)
4.4 s<(1+ s+ a;) mod 2°.
5. Return(ay, as, ... ,amy).

Note (optional user input) Algorithm 5.12 permits a user to augment the seed s with ran-
dom or pseudorandom strings derived from alternate sources. The user may desire to do
thisif she does not trust the quality or integrity of the random bit generator which may be
built into a cryptographic modul e implementing the algorithm.

Algorithm FIPS 186 pseudorandom number generator for DSA per-message secrets

INPUT: aninteger m and a 160-bit prime number q.
OUTPUT: m pseudorandom numbers k1, ko, . . . , k., intheinterva [0, ¢ — 1] which may
be used as the per-message secret numbers k in the DSA.
1. If Algorithm 5.15 isto be used in step 4.1 then select an integer b, 160 < b < 512;
if Algorithm 5.16 is to be used then set b+ 160.
2. Generate arandom (and secret) b-bit seed s.
3. Definethe 160-bit string t = ef cdab89 98badcfe 10325476 c3d2elf0
67452301 (in hexadecimal).
4. For i from 1 to m do the following:
4.1 k;«+G(t,s) mod q. (G iseither that defined in Algorithm 5.15 or 5.16.)
4.2 s«(1+ s+ k;) mod 2°.
5. Return(ky, ks, . . . , k).
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5.15 Algorithm FIPS 186 one-way function using SHA-1

INPUT: a160-hit string ¢ and a b-bit string ¢, 160 < b < 512.
OUTPUT: a 160-bit string denoted G(¢, c).
1. Break up t into five 32-hit blocks: ¢ = H || Ha||Hs|| H4| Hs.
2. Pad c with 0’sto obtain a 512-bit message block: X <¢||0512-°,
3. Divide X into 16 32-bit words. zgx . .. z15, and set m<«1.
4. Execute step 4 of SHA-1 (Algorithm 9.53). (Thisatersthe H;'s.)
5. The output isthe concatenation: G(t,c) = Hy || Hz||Hs|| Hal|| Hs.

5.16 Algorithm FIPS 186 one-way function using DES

INPUT: two 160-bit strings ¢ and c.
OUTPUT: a 160-bit string denoted G(¢, c).
1. Break up t into five 32-bit blocks: ¢ = to||t1|t2||t3]|t4.
2. Break up cinto five 32-bit blocks: ¢ = ¢p||c1]|e2]es||ca-
3. For i from 0 to 4 do the following: z;+t; & c;.
4. For ¢ from 0 to 4 do the following:
4.1 b14—C(ita)modss b24-C(i13)mods-
4.2 a1¢-;, A2¢-T(i11)mod5 D T(it4)mods-
4.3 A«aq||az, B+b)|be, whereb) denotesthe 24 least significant bits of b.
4.4 Use DESwith key B to encrypt A: y;<DESg(A).
4.5 Break up y; into two 32-bit blocks: y; = L;|| R;.
. Fori from 0 to 4 do thefollowing: 2z;<—L; @ R(i42)mods ® L(i+3)mods-
. The output isthe concatenation: G(t,c) = zo|| 21122 23] 24-

[e20Né)]

5.4 Statistical tests

This section presents some tests designed to measure the quality of a generator purported
to be arandom bit generator (Definition 5.1). Whileit isimpossible to give amathematical
proof that agenerator isindeed a random bit generator, the tests described here help detect
certain kinds of weaknessesthe generator may have. Thisisaccomplished by taking asam-
ple output sequence of the generator and subjecting it to various statistical tests. Each statis-
tical test determines whether the sequence possesses a certain attribute that a truly random
seguence would be likely to exhibit; the conclusion of each test is not definite, but rather
probabilistic. An example of such an attributeisthat the sequence should have roughly the
same number of 0'sas 1's. If the sequenceis deemed to havefailed any one of the statistical
tests, the generator may be rejected as being non-random; alternatively, the generator may
be subjected to further testing. On the other hand, if the sequence passes al of the statisti-
cal tests, the generator is accepted as being random. More precisely, the term “accepted”
should be replaced by “not rejected”, since passing the tests merely provides probabilistic
evidence